

5th Congress of the European Academy of Neurology Oslo, Norway, June 29 - July 2, 2019

Hands-on Course 1/5

Conventional needle EMG (Level 1)

Christian Krarup Copenhagen, Denmark

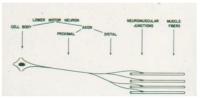
Email: ckrarup@dadlnet.dk

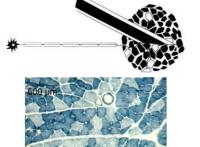
Needle EMG

Electromyography - conventional

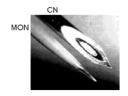
Christian Krarup, MD DMSc FRCP FEAN
Department of Clinical Neurophysiology,
Rigshospitalet and University of Copenhagen,
Denmark

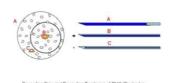
The Author has no Conflict of Interest in relation to this manuscript


The hands-on course


- Needle EMG
 - Short theoretical introduction
 - Demonstration of practical recording
 - Discussion with audience
 - If time permits discussion of cases

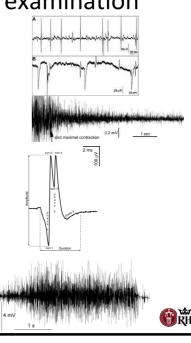
EMG is a central method to differentiate weakness due to neuromuscular disease


- Diagnose weakness as being due to:
 - Myopathy
 - Neurogenic lesion
 - Neuromuscular transmission
 - · (CNS affection)
- Specific diagnosis of disease:
 - e.g. ALS, myotonic dystrophy
- Evaluate course of disease:
 - Acute
 - · Chronic, sequelae
 - Progressive
 - Regeneration

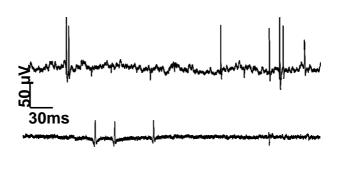


Electrodes for recording EMG signals determine the parameters that can be evaluated

Different electrodes record from different areas of the motor unit: A) macroelectrodes record from the whole motor unit, B) concentric needle (CN) electrode from selected areas, and C) SFEMG from an individual fiber


Equipment set-up should be considered:

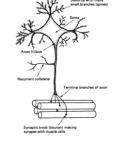
- 1. Frequency range: 2 (or 20Hz) 10 kHz
- 2. Trigger function
- 3. Display: raw, superimposed, averaged MUP signals

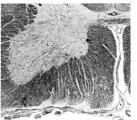


Elements of the EMG examination

- Activity at rest (stability & excitability of the muscle or axonal cell membrane):
 - Denervation activity
 - Fasciculations
 - Myotonia
 - · Complex repetitive discharges
- Activity during weak effort (structure and function of motor units)
 - Motor unit potentials
- Activity during maximal voluntary effort
 - Recruitment pattern

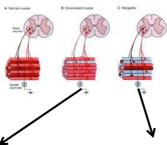
End-plate potentials (EPP), miniature end plate potentials (MEPP), fibrillation activity





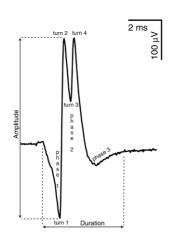
The motor unit

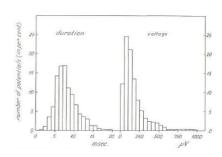
- Anterior horn cell, nerve fiber, muscle fibers
- Anterior horn cell in the CNS
- Great variation in "innervation ratio"



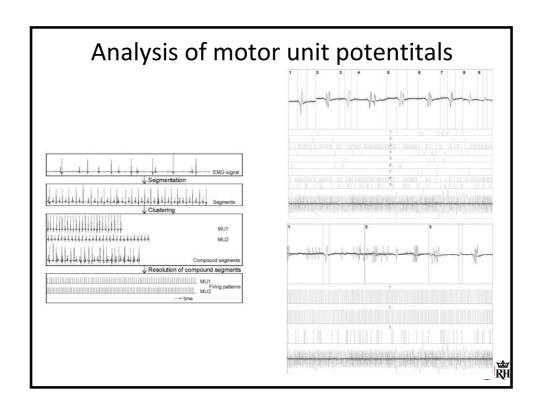
Clin. Neurophysiol

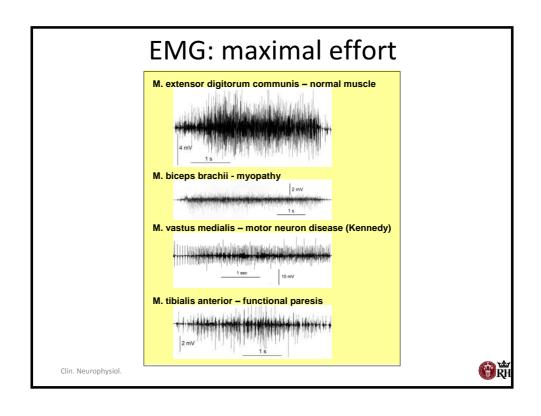
Basic muscle pathophysiology

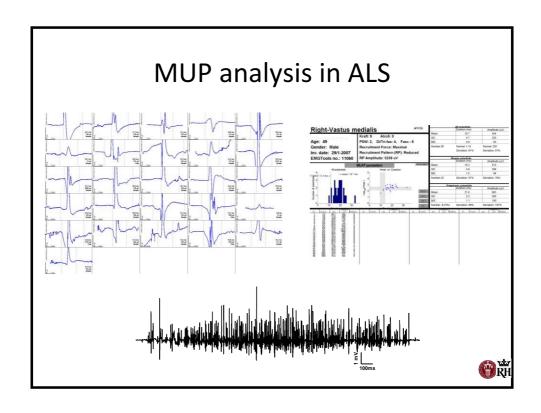

- Neurogenic disorders
 - denervation
 - loss of function of M.U. weakness
 collateral sprouting and reinnervation
 - incorporation of muscle fibers in remaining M.U. recovery of function and preserving strength
 - final result
 - · fewer and larger M.U.

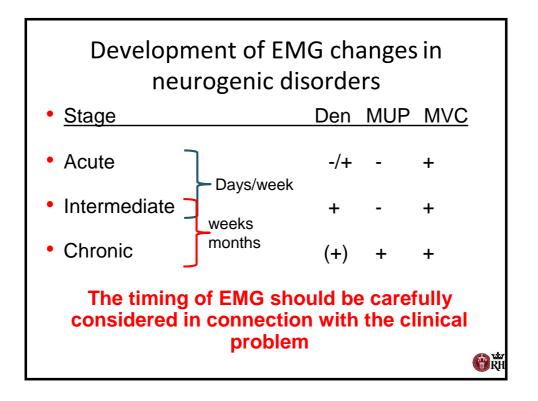

Muscle disease

- degeneration/failure of muscle fibers
 - loss of function of muscle fibers weakness
- regeneration of muscle fibers
 - incorporation in M.U. preserving strength
- final result
 - Normal number but smaller M.U.


Motor unit potential variability






Measurements of durations and amplitudes of 1268 MUPs from the brachial biceps muscle of a normal man, aged 21 years. The durations ranged from 3 to 15 ms at different recording sites, from Buchthal

Summary

- Standardized approach
- Timing of study
- Denervation activity: mainly in neurogenic disorders but also in some myopathies
- MUP shape, amplitude and duration: distinguish between myopathy and neurogenic lesions
- Recruitment pattern: important and difficult!

