

5th Congress of the European Academy of Neurology

Oslo, Norway, June 29 - July 2, 2019

Teaching Course 1

Mitochondrial diseases for beginners (Level 1)

Diagnostic approach: which are the red flags?

Michelangelo Mancuso Pisa, Italy

Email: mancusomichelangelo@gmail.com

NOTHING TO DISCLOSE

Mitochondrial disorders in neurology are either underdiagnosed

"what is this bizarre syndrome?"

or overdiagnosed

"this syndrome is so bizarre that it must be mitochondrial"

In fact...

- 100s of different mtDNA-related diseases
- 100s of different nDNA-related diseases
- Even in individuals with the same mutation, there are different symptoms
- Change over time
- Challenging to diagnose
- Challenging to treat

There's the scarlet thread of murder running through the colourless skein of life, and our duty is to unravel it, and isolate it, and expose every inch of it

A Study in Scarlet, 1887 Arthur Conan Doyle

There's the scarlet thread of **mitochondria** running through the colourless skein of life, and our duty is to unravel it, and isolate it, and expose every inch of it

The diagnostic process **is no different from that employed for other diseases** and includes patient and family history, physical and neurologic examination, routine and special laboratory tests, exercise physiology, muscle biopsy for morphology and biochemistry, and molecular genetic screening

You see Watson, but you do not observe

Diagnosis: assessing involvement

- Brain MRI (also spectroscopy)
- EEG
- Sleep Study
- Echocardiogram
- EKG
- Abdominal Ultrasound
- Swallow Evaluation
- Nutrition Assessment
- Developmental Assessment
- Vision Test
- Ophthalmologic Examination+OCT
- Hearing Test

- Labs:
 - Liver Function Tests
 - Fasting Serum Glucose
 - Ammonia
 - Amino Acids
 - Lactic Acid
 - Free/Total Carnitine
 - Urine organic aciduria
 - Biomarkers

Maternal vs Mendelian inheritance

Mendelian inheritance is also very common in mitochondrial diseases because of the multiple nuclear genes causing disease. Parental consanguinity suggests autosomal recessive inheritance. Incomplete penetrance, and absence of genotype-phenotype correlation, including those within the same family, is common.

13

Neurotherapeutics (2013) 10:243-250 DOI 10.1007/s13311-012-0173-2

REVIEW

Genetic Counseling in Mitochondrial Disease

Jodie M. Vento • Belen Pappa

The little things are infinitely the most important

AS A GENERAL ROLE, mtDNA SINGLE DELETION IS ALWAYS SPORADIC!

Age a	it onset is not a red flag of mitochondriopathy.
•	Onset varies widely in mtDNA and nuclear DNA-related diseases, even within
mem	bers of the same family.
•	
• by	

Onset and progression

Age at onset is not a red flag of mitochondriopathy.

Onset varies widely in mtDNA and nuclear DNA-related diseases, even within members of the

same family.

• Specific mitochondrial syndromes have onset in infancy or early childhood and may follow

several months of normal development (i.e. mitochondrial depletion or Leigh syndromes).

Vice versa, very late onset is frequent in disorders of intergenomic communications caused by POLG

Antenatal	Intra-uterine growth retardation, birth anomalies (20 %): poly-/oligohydramnios, arthrogryposis, ventricular septal defect, hypertrophic cardiomyopathy, VACTERL (vertebral and limb defects)
Neonates	Keto/lactic acidotic coma: apnea, seizures, severe hypotonia; hepatomegaly or hepatic failure; severe sideroblastic anemia; concentric hypertrophic cardiomyopathy; proximal tubulopathy (Fanconi syndrome); myopathy
Infants	Failure to thrive, chronic diarrhea, recurrent acute myoglobinuria, proximal tubulopathy, nephrotic syndrome, liver failure, Leigh syndrome
Childhood	Multisystemic disease, brain (seizure, regression, dystonia, ataxia, encephalopathy, stroke-like episodes), progressive myopathy, myalgia, exercise intolerance; hypertrophic or dilated cardiomyopathy, heart block; multiple endocrinopathies, CPEO/ptosis, retinopathy, eatracts, Sensorineural hearing loss

VACTERL = OMIM#192350 (also known as VATER): vertebral defects (V), anal atresia (A), cardiac malformations (C), tracheoesophageal fistula with esophageal atresia (TE), and radial or renal dysplasia R), limb anomalies (L)

Symptom Review: brain

- Seizures
- Myoclonus
- Ataxia
- Hypotonia
- Spasticity
- Dystonia
- Tremor
- Parkinsonism
- Other movement disorder
- "stroke-like" episodes
- Migraine

- Central Apnea
- Developmental Delays
- Developmental Regression
- Dementia
- Learning Disabilities
- Autism or autistic-like features
- Behavioral Concerns
- Psychiatric Conditions
- Coma

19

Central Nervous System:

able 6 Red flag symptoms				
elated to primary	Symptom	Red flag signs		
itochondrial disease	Stroke	Located in a nonvascular distribution		
	Basal ganglia lesions	Bilateral symmetric (characteristic of Leigh syndrome); also with brainstem lesions		
	Encephalopathy-hepatopathy	Precipitated by valproic acid exposure; associated hepatic failure		
	Epilepsy	Epilepsia partialis continua, myoclonus, status epilepticus		
	Cognitive decline	Regression with illness		
	Ataxia	Associated with epilepsy or other systemic symptoms; neuroimaging may show cerebellar atrophy, white matter lesions, basal ganglia lesion		
	Ocular signs	Optic nerve atrophy, ophthalmoplegia, ptosis; retinopathy		
	Sensorineural hearing loss	At early age, accompanied by other systemic symptoms		
-	Cardiac conduction disorders	Wolff-Parkinson-White, heart block		
	Cardiomyopathy	Accompanied by skeletal myopathy		
	Glomerulopathy	Steroid-resistant nephropathy		
	Proximal tubulopathy; Fanconi's syndrome	Renal tubular acidosis; tubulointerstitial nephritis		
	Pancreatic dysfunction	Diabetes mellitus		
	Thyroid dysfunction	Hypothyroidism		
	Gastrointestinal dysmotility	Chronic intestinal pseudo-obstruction		
	Hepatopathy	With encephalopathy		

...but also myoclonus, psychomotor retardation or regression, migraine, tremor and parkinsonism.

CHALLENGES OF MODERN MITOCHONDRIAL MEDICINE

- INTERNATIONAL COLLABORATIONS
- STAKEHOLDERS SHARING KNOWLEDGE
- PATIENTS REGISTRIES
- HPO LANGUAGE
- THE GLOBAL REGISTRY CHALLENGE

	Retinopathy $N = 24$	Non-retinopathy $N = 204$	P
Hearing loss	14 (58.3 %)	28 (13.7 %)	0.000004
Ataxia	13 (54.2 %)	15 (7.4 %)	< 0.000001
Failure to thrive/short st.	7 (29.2 %)	15 (7.4 %)	0.0035
Diabetes	3 (12.5 %)	17 (8.3 %)	ns
Cardiac conduction def.	4 (16.7 %)	8 (3.9 %)	ns
Increased liver enzymes	1 (4.2 %)	11 (5.4 %)	ns
Anemia	2 (8.3 %)	9 (4.4 %)	ns
Neuropathy	3 (12.5 %)	7 (3.4 %)	ns
Migraine	1 (4.2 %)	9 (4.4 %)	ns
Cognitive involvement	3 (12.5 %)	5 (2.5 %)	ns
Tremor	1 (4.2 %)	6 (2.9 %)	ns
Psychiatric involvement	1 (4.2 %)	6 (2.9 %)	ns
Cardiomyopathy	- (0 %)	6 (2.9 %)	ns
Hypothyroidism	- (0 %)	6 (2.9 %)	ns

	Ataxia $N = 28$	Non-ataxia $N = 200$	Р
Hearing loss	16 (57.1 %)	26 (13.0 %)	0.000001
Retinopathy	13 (46.4 %)	11 (5.5 %)	< 0.000001
Failure to thrive/short st.	14 (50.0 %)	8 (4.0 %)	<0.000001
Diabetes	5 (17.9 %)	15 (7.5 %)	ns
Cardiac conduction def.	2 (7.1 %)	10 (5.0 %)	ns
Increased liver enzymes	3 (10.7 %)	9 (4.5 %)	ns
Anemia	4 (14.3 %)	7 (3.5 %)	ns
Neuropathy	3 (10.7 %)	7 (3.5 %)	ns
Migraine	3 (10.7 %)	7 (3.5 %)	ns
Cognitive involvement	6 (21.4 %)	2 (1.0 %)	0.000048
Tremor	5 (17.9 %)	2 (1.0 %)	0.00035
Psychiatric involvement	3 (10.7 %)	4 (2.0 %)	ns
Cardiomyopathy	1 (3.6 %)	5 (2.5 %)	ns
Hypothyroidism	1 (3.6 %)	5 (2.5 %)	ns

KSS spect	rum
Ptosis and scale del	or ophthalmoparesis due to an mtDNA single large- etion and at least one of the following features
Retinop	athy
Ataxia	
Cardiac	conduction defects
Hearing	; loss
Failure	to thrive/short stature
Cogniti	ve involvement
Tremor	
Cardior	nyopathy
PEO	
Ptosis and deletion criteria f	or ophthalmoparesis due to a mtDNA single large-scale not fulfilling the new "KSS spectrum" criteria or for Pearson syndrome

With the new clinical definition, we were able to classify almost all (97%) our single-deletion patients:

- 62.7% PEO (141/22), vs 54.6 NMD 2012
- 31.6% KSS (71/225), vs 6.6 NMD 2012
- 2.7% Pearson (6/225), NMD 2.7

'New "KSS: multisystem involvement, more severe muscular impairment (weakness and wasting), MRI frequently abnormal (white matter, brainstem, basal nuclei), mean age at onset 21 years, worst prognosis.

'New "single-deletion PEO: prominent myopathic involvement, MRI frequently normal, mean age at onset 27 years, better prognosis.

31

J Neurol DOI 10.1007/s00415-013-7225-3

ORIGINAL COMMUNICATION

The m.3243A>G mitochondrial DNA mutation and related phenotypes. A matter of gender?

Michelangelo Mancuso · Daniele Orsucci · Corrado Angelini · Enrico Bertini · Valerio Carelli · Giacomo Pietro Comi · Alice Donati · Carlo Minetti · Maurizio Moggio · Tiziana Mongini · Serenella Servidei · Paola Tonin · Antonio Toscano · Graziella Uziel · Claudio Bruno · Elena Caldarazzo Ienco · Massimiliano Filosto · Costanza Lamperti · Michela Catteruccia · Isabella Moroni · Olimpia Musumeci · Elena Pegoraro · Dario Ronchi · Filippo Maria Santorelli · Donato Sauchelli · Mauro Scarpelli · Monica Sciacco · Maria Lucia Valentino · Liliana Vercelli · Massimo Zeviani · Gabriele Siciliano

	Onset	Last evaluation			
	24.5 ± 15.7 years*	39.9 ± 18.7 years			
Hearing loss	37 (33.3%)	68 (61.3%)	7		
Generalized seizures	21 (18.9%)	43 (38.7%)	7		
Diabetes	20 (18.0%)	47 (42.3%)	7		
Ptosis/ophthalmoparesis	15 (13.5%)	33 (29.7%)	1		
Stroke-like episodes	14 (12.6%)	48 (43.2%)	Vomiting	5 (4.5%)	6 (5.4%)
Migraine	14 (12.6%)	29 (26.1%)	Gastrointestinal dysmotil.	4 (3.6%)	15 (13.5%)
Exercise intolerance	14 (12.6%)	36 (32.4%)	Neuropathy	4 (3.6%)	12 (10.8%)
Muscle weakness	12 (10.8%)	41 (36.9%)	Ataxia	3 (2.7%)	24 (21.6%)
Heart disease	10 (9.0%)	34 (30.6%)	Myoclonus	3 (2.7%)	6 (5.4%)
Cognitive involvement	10 (9.0%)	27 (24.3%)	Hypothyroidism	2 (1.8%)	5 (4.5%)
Failure to thrive/short st.	8 (7.2%)	16 (14.4%)	Hypotonia	2 (1.8%)	13 (11.7%)
Increased CK	7 (6.3%)	21 (18.9%)	Retinopathy	2 (1.8%)	11 (9.9%)
Muscle pain	7 (6.3%)	13 (11.7%)	Psychiatric involvement	1 (0.9%)	6 (5.4%)
Muscle wasting	5 (4.5%)	22 (19.8%)	Optic neuropathy	1 (0.9%)	5 (4.5%)
	•	- 1	Hypogonadism	1 (0.9%)	5 (4.5%)
			Pyramidal signs	-	14 (12.6%)
			Status epilepticus	-	5 (4.5%)
			Respiratory impairment	-	4 (3.6%)
			Swallowing impairment hepatopathy, kidney inv [*for the symptomatic p	, tremor, anem . < 3% atients]	ia, cataract, dys

MITOCHONDRIAL ATAXIAS – SANDO

POLG mutations causing ophthalmoplegia, sensorimotor polyneuropathy, ataxia, and deafness M. Mancuse, MD; M. Filosto, MD; A. Baruzzi, MD; S. DMAuro, MD; at. Acavelli, MD

- Mancuso et al. 2004
- Caused by mutations in mitochondrial POLG gene
- POLG encodes the catalytic subunit of mitochondrial DNA polymerase
- Adult-onset disease (typically between 16–40 years of age)
- Typical clinical symptoms include:
 - Sensory ataxic neuropathy
 - Dysarthria
 - Chronic progressive external ophthalmoplegia

Valenting Emmanuele MD: Luis C. Lón	e Review	
Valentina Emmanuele MD: Luis C. Lán		
Erin D'Agostino, BA; Martha Solomon, 1	eez, PhD; Andres Berardo, MD; Ali Nain BA; Salvatore DiMauro, MD; Catarina (ii, PhD; Saba Tadesse, BS; Bing Wen, MD; Quinzii, MD; Michio Hirano, MD
-		
		10.0 B.C.L
Table 3. Clinical Response to Col	Q ₁₀ Supplementation in Major Fo	rms of CoQ ₁₀ Deficiency
Sundromo (No. of Dotionto)	CoO ₁₀ Doses: Duration	Response to Therapy
synurome (No. or Fatients)		
Encephalomyopathy (4)	150 mg/d; 3-8 mo	Improvement of muscle symptoms in 4/4 and encephalopathy in 1 patient
Encephalomyopathy (4) Isolated myopathy (8)	150 mg/d; 3-8 mo 150-500 mg/d; 4-12 mo	Improvement of muscle symptoms in 4/4 and encephalopathy in 1 patient Improvement in 6 patients
Encephalomyopathy (4) Isolated myopathy (8) Isolated nephropathy (4)	150 mg/d; 3-8 mo 150-500 mg/d; 4-12 mo 30 mg/kg/d-100 mg/d; 2-50 mo	Improvement of muscle symptoms in 4/4 and encephalopathy in 1 patient Improvement in 6 patients Reduced proteinuria in 3 patients; hearing improvement in 1/2 patients: no
Encephalomyopathy (4) Isolated myopathy (8) Isolated nephropathy (4)	150 mg/d; 3-8 mo 150-500 mg/d; 4-12 mo 30 mg/kg/d-100 mg/d; 2-50 mo	Improvement of muscle symptoms in 4/4 and encephalopathy in 1 patient Improvement in 6 patients Reduced proteinuria in 3 patients; hearing improvement in 1/2 patients; no follow-up data in 1 patient
Encephalomyopathy (4) Isolated myopathy (8) Isolated nephropathy (4)	150 mg/d; 3-8 mo 150-500 mg/d; 4-12 mo 30 mg/kg/d-100 mg/d; 2-50 mo 30 mg/kg/d-300 mg/d; 5-36 mg	Improvement of muscle symptoms in 4/4 and encephalopathy in 1 patient Improvement in 6 patients Reduced proteinuria in 3 patients; hearing improvement in 1/2 patients; no follow-up data in 1 patient Improvement of mvonathic symptoms and stabilization of encephalopathy
Encephalomyopathy (4) Isolated myopathy (8) Isolated nephropathy (4) Infantile multisystemic disease (4)	150 mg/d; 3-8 mo 150-500 mg/d; 4-12 mo 30 mg/kg/d-100 mg/d; 2-50 mo 30 mg/kg/d-300 mg/d; 5-36 m	Improvement of muscle symptoms in 4/4 and encephalopathy in 1 patient Improvement in 6 patients Reduced proteinuria in 3 patients; hearing improvement in 1/2 patients; no follow-up data in 1 patient Improvement of myopathic symptoms and stabilization of encephalopathy in 1 patient, neuropoincial but not renal improvement in 1 patient
Encephalomyopathy (4) Encephalomyopathy (4) Isolated nephropathy (4) Infantile multisystemic disease (4) Cerebellar ataxia (54)	150 mg/d; 3-8 mo 150-500 mg/d; 4-12 mo 30 mg/kg/d-100 mg/d; 2-50 mg 30 mg/kg/d-300 mg/d; 5-36 mg 5 mg/kg/d-3000 mg/d; 1 mg-12 v	Improvement of muscle symptoms in 4/4 and encephalopathy in 1 patient Improvement in 6 patients Reduced proteinuria in 3 patients; hearing improvement in 1/2 patients; no follow-up data in 1 patient Improvement of myopathic symptoms and stabilization of encephalopathy in 1 patient; neurological, but not renal improvement in 1 patient Improvement of myscle symptoms in 13/20 patients; seizures in 3/14
Encephalomyopathy (4) Solated myopathy (8) solated nephropathy (4) Infantile multisystemic disease (4) Derebellar ataxia (54)	150 mg/d; 3-8 mo 150-500 mg/d; 4-12 mo 30 mg/kg/d-100 mg/d; 2-50 mo 30 mg/kg/d-300 mg/d; 5-36 m 5 mg/kg/d-3000 mg/d; 1 mo-12 y	Improvement of muscle symptoms in 4/4 and encephalopathy in 1 patient Improvement in 6 patients Reduced proteinuria in 3 patients; hearing improvement in 1/2 patients; no follow-up data in 1 patient Improvement of myopathic symptoms and stabilization of encephalopathy in 1 patient; neurological, but not renal improvement in 1 patient Improvement of muscle symptoms in 13/20 patients; seizures in 3/14 patients; ataxia in 25/54 patients.
Encephalomyopathy (4) Esolated myopathy (8) Isolated nephropathy (4) Infantile multisystemic disease (4) Cerebellar ataxia (54)	150 mg/d; 3-8 mo 150-500 mg/d; 4-12 mo 30 mg/kg/d-100 mg/d; 2-50 mg 30 mg/kg/d-300 mg/d; 5-36 mg 5 mg/kg/d-3000 mg/d; 1 mo-12 y	Improvement of muscle symptoms in 4/4 and encephalopathy in 1 patient Improvement in 6 patients Reduced proteinuria in 3 patients; hearing improvement in 1/2 patients; no follow-up data in 1 patient Improvement of myopathic symptoms and stabilization of encephalopathy in 1 patient; neurological, but not renal improvement in 1 patient Improvement of muscle symptoms in 13/20 patients; seizures in 3/14 patients; ataxia in 25/54 patients.
Encephalomyopathy (4) Encephalomyopathy (4) Isolated nephropathy (4) Infantile multisystemic disease (4) Cerebellar ataxia (54)	150 mg/d; 3-8 mo 150-500 mg/d; 4-12 mo 30 mg/kg/d-100 mg/d; 2-50 mg/d; 30 mg/kg/d-300 mg/d; 5-36 m 5 mg/kg/d-3000 mg/d; 1 mo-12 y	Improvement of muscle symptoms in 4/4 and encephalopathy in 1 patient Improvement in 6 patients Reduced proteinuria in 3 patients; hearing improvement in 1/2 patients; no follow-up data in 1 patient Improvement of myopathic symptoms and stabilization of encephalopathy in 1 patient; neurological, but not renal improvement in 1 patient Improvement of muscle symptoms in 13/20 patients; seizures in 3/14 patients; ataxia in 25/54 patients.
Encephalomyopathy (4) Encephalomyopathy (4) Isolated nephropathy (4) Infantile multisystemic disease (4) Cerebellar ataxia (54)	150 mg/d; 3-8 mo 150-500 mg/d; 4-12 mo 30 mg/kg/d-100 mg/d; 2-50 mg 30 mg/kg/d-300 mg/d; 5-36 mg 5 mg/kg/d-3000 mg/d; 1 mo-12 y	Improvement of muscle symptoms in 4/4 and encephalopathy in 1 patient Improvement in 6 patients Reduced proteinuria in 3 patients; hearing improvement in 1/2 patients; no follow-up data in 1 patient Improvement of myopathic symptoms and stabilization of encephalopathy in 1 patient; neurological, but not renal improvement in 1 patient Improvement of muscle symptoms in 13/20 patients; seizures in 3/14 patients; ataxia in 25/54 patients.
Encephalomyopathy (4) Encephalomyopathy (4) Isolated nephropathy (4) Infantile multisystemic disease (4) Cerebellar ataxia (54)	150 mg/d; 3-8 mo 150-500 mg/d; 4-12 mo 30 mg/kg/d-100 mg/d; 2-50 mg 30 mg/kg/d-300 mg/d; 5-36 mg 5 mg/kg/d-3000 mg/d; 1 mo-12 y	Improvement of muscle symptoms in 4/4 and encephalopathy in 1 patient Improvement in 6 patients Reduced proteinuria in 3 patients; hearing improvement in 1/2 patients; no follow-up data in 1 patient Improvement of myopathic symptoms and stabilization of encephalopathy in 1 patient; neurological, but not renal improvement in 1 patient Improvement of muscle symptoms in 13/20 patients; seizures in 3/14 patients; ataxia in 25/54 patients.
Encephalomyopathy (4) isolated myopathy (8) isolated nephropathy (4) Infantile multisystemic disease (4) Cerebellar ataxia (54)	150 mg/d; 3-8 mo 150-500 mg/d; 4-12 mo 30 mg/kg/d-100 mg/d; 2-50 mg 30 mg/kg/d-300 mg/d; 5-36 mg 5 mg/kg/d-3000 mg/d; 1 mo-12 y	Improvement of muscle symptoms in 4/4 and encephalopathy in 1 patient Improvement in 6 patients Reduced proteinuria in 3 patients; hearing improvement in 1/2 patients; no follow-up data in 1 patient Improvement of myopathic symptoms and stabilization of encephalopathy in 1 patient; neurological, but not renal improvement in 1 patient Improvement of muscle symptoms in 13/20 patients; seizures in 3/14 patients; ataxia in 25/54 patients.

	Patients (1330 tot with full phenotype described)	Percentag
Ptosis/ophthalmoparesis	636	47,8
Muscle weakness	488	36,7
Hearing loss	330	24,8
Exercise intolerance	279	21
Optic neuropathy	241	18,1
Muscle wasting	233	17,5
Cerebellar ataxia	198	14,8
Cognitive involvement	189	14,2
Hypotonia	180	13,5
Neuropathy	163	12,2
Swallowing impairment	162	12,1
Epileptic seizures	152	11,4
Muscle pain	152	11,4
Diabetes	121	9
Pyramidal involvement	115	8,6
Respiratory impairment	115	8,6
Cardiomyopathy	106	7,9
Migraine	102	7,6
Retinopathy	92	6,9
Gastroint. dysmotility	69	5,1

PRIMARY MITOCHONDRIAL MYOPATHIES

genetically defined disorders leading to defects of oxidative phosphorylation affecting predominantly, but not exclusively, skeletal muscle (see below for methodology). Secondary involvement of mitochondria, frequently observed in multiple neuromuscular diseases (i.e. inclusion body myositis, Duchenne muscular dystrophy, Kennedy disease) are not considered PMM

Workshop report International Workshop: Outcome measures and clinical trial readiness in primary mitochondrial myopathies in children and adults. Consensus recommendations. Rome, Italy, 16–18 November 2016 Michelangelo Mancuos **, Robert McFarland *, Thomas Klopstock *, Michio Hirano * on behalf of the consortium on Trial Readiness in Michoodrail Moyopathies * ** Programmed of Clinical Mathematics ** ** Consensus recommendations ** ** Consensus recommendati

	Patients (n = 1156)	%	
Ptosis/ophthalmoparesis	617	53.4	
Muscle weakness	446	38.6	
Hearing loss	279	24.1	
Exercise intolerance	239	20.7	Mean age at onset 24.3 ± 20.1 years
Optic neuropathy	214	18.5	Age at last evaluation 39.8 \pm 22.3 years
Muscle wasting	212	18.3	Childhood onset [before age 16-yrs] 43.19
Cerebellar ataxia	186	16.1	Females 52.7%
Cognitive involvement	180	15.6	
Hypotonia	179	15.5	
Neuropathy	143	12.4	
Swallowing impairment	137	11.9	The second s
Epileptic seizures	131	11.3	eleThon
Muscle pain	124	10.7	COMMATTI A DISTRIBUTA MUSCOLARE E LE ALTRE MALATTIE GENETICHE
Pyramidal involvement	112	9.7	
Diabetes	102	8.8	Mancuso et al 20

	Neuropathy: No (n = 1013)	Neuropathy: Yes (n = 143)	P
mtDNA single deletion	218 (21.5%)	9 (6.3%)	0.000003
mtDNA A3243G mutation	90 (8.9%)	12 (8.4%)	n.s.
mtDNA A8344G mutation	30 (3.0%)	5 (3.5%)	n.s.
mtDNA T8993C mutation	12 (1.2%)	6 (4.2%)	n.s.
mtDNA LHON mutations	103 (10.2%)	1 (0.7%)	0.00002
Other mtDNA mutations	53 (5.2%)	7 (4.8%)	n.s.
OPA1 mutations	72 (7.1%)	5 (3.5%)	n.s.
POLG mutations	26 (2.6%)	19 (13.3%)	< 0.00000
Twinkle mutations	22 (2.2%)	6 (4.2%)	n.s.
SURF1 mutations	10 (1.0%)	10 (7.0%)	0.00004
PDHA1 mutations	11 (1.1%)	1 (0.7%)	n.s.
TP mutations	2 (0.2%)	9 (6.3%)	< 0.00000

Significance levels after Bonferroni's correction: 0.0042

"Construction of a database for a nation-wide Italian collaborative network of mitochondrial diseases"

Symptom Review: heart, lungs, kidneys, bladder, endocrine

- <u>Pulmonary:</u>
 - Dyspnea
 - Obstructive Sleep Apnea
- <u>Heart:</u>
 - Cardiomyopathy
 - Arrhythmia
 - Heart Block
- Kidney:
 - Renal Tubular Acidosis
 - Renal Failure
- Hearing loss

- <u>Bladder:</u>
 - Urinary Retention
 - Incomplete Emptying
- Endocrine:
 - Short Stature
 - Diabetes Mellitus (MIDD)
 - Hypothyroidism
 - Hypoparathyroidism
 - Adrenal Insufficiency

MIDD+SNHL: m.3243

Case 2

Symptom Review: GI & Endocrine

<u>GI:</u>

- Anorexia
- Early Satiety
- Failure to Thrive
- Abdominal Pain
- Gastroesophageal Reflux
- Bloating
- Abdominal Distention
- Pseudo-Obstruction
- Constipation
- Cyclic Vomiting

- Liver:
 - Hepatomegaly
 - Dysfunction
 - Fatty Liver
 - Cirrhosis
 - Coagulopathy
- Pancreas:
 - Pancreatic dysfunction
- <u>Endocrine</u>
 - Diabetes
 - Short stature
 - Dysthyroidism
 - Progressive reduction in BMI

ERGAMON	Neuromuscular Disore Review MNGIE: from nuclear DN Ichizo Nishino ^{1,*} , Antonella Department of Neurology, Columbia U Received 19 January 2000; received in revised	ers 11 (2001) 7–10 article A to mitochondrial D Spinazzola, Michio Hirano niversity, New York, NY 10032, USA form 12 May 2000; accepted 16 May 2000	www.elsevier.com/locate/hmm	-		
	Table 1 Clinical features of MNGIE					
	Cachexia Gastrointestinal manifestations Borborgmi Abdominal pain Diarthea Early satiety Diverticulosis Pseudo-obstruction Neurological manifestations Ptosis Ophthalmoplegia Peripheral neuropathy Hearing loss	100% (35/35) 100% (35/35) 96% 94% 93% 67% 65% 100% (34/34) 100% 100% 100% 45%		thymidine † TK	mitochondriá	

Acute: fulminant or acute liver failure is one important presentation of mitochondrial disease. Especially in a young child or in one with pre-existing or disproportionate central nervous system (CNS) involvement, mitochondrial disease is in the differential diagnosis of acute liver failure.

In children with unknown status epilepticus treated with valproic acid and developing acute liver failure, Alpers syndrome (POLG) should be suspected

AVOID VALPROIC ACID IN POLG

FUNDUS OCULI EXAMINATION: LHON

- preceding or during the acute stage of vision loss, there can be characteristic findings, including optic disc hyperemia, peripapillary telangiectatic blood vessels, vascular tortuosity, and swelling of the retinal nerve fiber layer around the optic disc without corresponding leakage on fluorescein angiography ("pseudoedema").

FO NORMAL AT THE ONSET UP TO 20%

LABORATORY TESTS

- Labs:
 - Liver Function Tests
 - CPK: normal or moderately elevated in patients with MDs. One notable exception is the myopathic form of the mtDNA depletion syndrome (TK2)
 - Urine Myoglobine: Some mito-patients (i.e. patients with cytochrome b mutations) may occasionally manifest with acute episodes of rhabdomyolysis with myoglobinuria
 - Fasting Serum Glucose
 - Ammonia
 - Amino Acids
 - Serum Thymidine: elevated in MNGIE (specific deficiency of thymidine phosphorylase)
 - Lactic Acid
 - UOA

Lactic acid

The key features of a mitochondrial myopathy are a low anaerobic threshold, indicating impaired oxygen utilization, and an increased respiratory exchange ratio because of an inefficient utilization of fatty acids as an energy source

Increased lactate may also be detected in the cerebrospinal fluid (CSF).

73

Elevated **lactate-to-pyruvate (L:P) ratio** may indicate inherited disorders of the respiratory chain complex, tricarboxylic acid cycle disorders and pyruvate carboxylase deficiency. Respiratory chain defects usually result in L:P ratios >20.

A low L:P ratio may indicate an inherited disorder of pyruvate metabolism. Defects of the pyruvate dehydrogenase complex result in L:P ratios <10

lactate was also present inserum

When hypothesize a mitochondrial disorder?

but

Mitochondrial disorders in neurology are either underdiagnosed : "what is this bizarre syndrome?" or overdiagnosed: "this syndrome is so bizarre that it must be mitochondrial"

It is a mistake to confound strangeness with mystery. The most commonplace crime is often the most mysterious because it presents no new or special features from which deductions may be drawn. The strange details, far from making the case more difficult, have really had the effect of making it less so."

	SNC -seizures & myoclonus -ataxia -cognitive imp. -stroke like episodes -movement disorders -optic atrophy -NSHL -psychomotor impairment\hallucinations NEUROMUSCULAR -PEO -Exercise intolerance -Weakness, fatigue, pain -wasting -dysphagia -numbness\paresthesia	
BEYOND NEUROLOGY -cardio(myo)pathy -liver imp. -diabetes -NSHL -lactic acidosis		

