

### 5<sup>th</sup> Congress of the European Academy of Neurology Oslo, Norway, June 29 - July 2, 2019

#### **Teaching Course 3**

EAN/PNS: Novel approach in the treatment of neuropathy (Level3)

# Genetic therapy in amyloid neuropathy: the future has started

Davide Pareyson Milan, Italy

Email: davide.pareyson@istituto-besta.it

# Genetic therapy in amyloid neuropathy: the future has started

### Davide Pareyson

IRCCS Foundation C.Besta Neurological Institute Milan - Italy

Teaching course EAN/PNS: Novel approach in the treatment of neuropathy

5<sup>TH</sup> EAN Meeting - Oslo, 29<sup>th</sup> June 2019







1

#### **Disclosures**

- Acknowledges donations from Pfizer, LAM Therapeutics and Acceleron to support research activities of his Research Unit
- Financial support from Pfizer and Kedrion for participation in National and International Meetings
- Participation in Advisory Board of Inflectis, Alnylam and Akcea
- Consultancy for Alnylam

- Hereditary TTR Amyloidosis (hATTR)
- Heterogeneity of presentation and importance of early diagnosis
- Liver transplantation and TTR stabilizers
- Gene silencing (ASO and siRNA)
- New perspectives and new problems in the novel scenario

#### Hereditary Transthyretin Amyloidosis (hATTR) **<u>Transthyretin</u>**: serum and CSF transport protein for retinol-binding protein and thyroxine; synthesized in liver (+ choroid plexus, retinal pigment epithelium) <u>Dominant</u> mutations cause conformational changes and deposition as amyloid in several organs, nerve-ganglia, heart, kidney, eye, **leptomeninges** Native Amyloid Fibril Amyloid Oligomer Monomer deposit Conformationally-changed WT TTR Mutant TTR Conformationally-changed Mutant TTR Amyloid = fibrils 7-13 nm, core structure of beta-strands + other proteins glycosaminoglycans and serum amyloid P component (SAP)

Congo Red - green birefringence

#### Hereditary Transthyretin Amyloidosis (hATTR)

Autosomal dominant inheritance (>120 mutations; V30M)

Onset 10-90 yrs (early onset / late onset)

Lenght-dependent sensory-motor polyneuropathy

Autonomic neuropathy

Cardiomyopathy = arrhythmias, hypertrophic cm

Ocular involvement = vitreous opacities, glaucoma

Rare leptomeningeal involvement

Carpal tunnel syndrome

Rapid course, lethal if untreated in 7-15 years

Endemic in Portugal, Sweden, Japan, Maiorca, (Brazil)

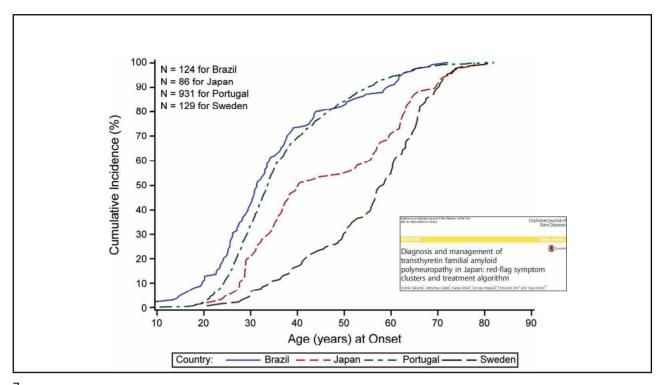
Increased recognition in non-endemic countries

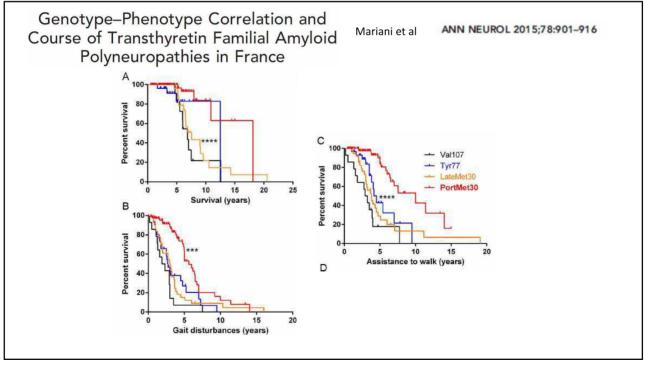
Early diagnosis of paramount importance as effective treaments available







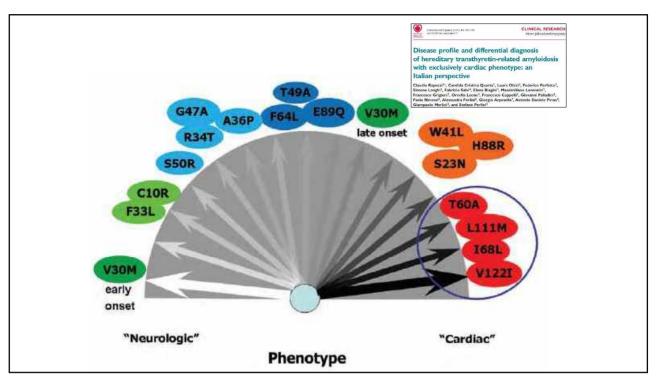

#### Typical early-onset Val30Met (Portuguese type)

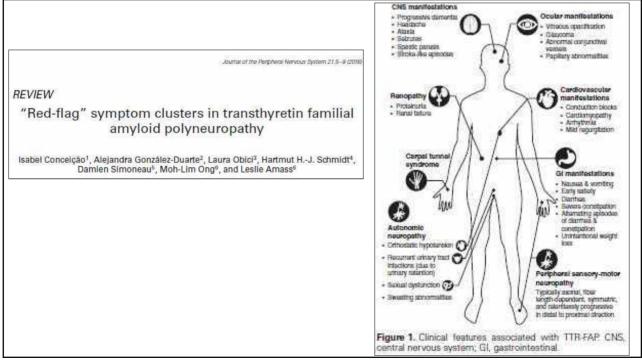

- Age of onset = peak 25-35 yrs (mean 33.5)
- · Small fibre sensory neuropathy
  - Pain and thermal sensory loss
  - Early dysautonomia (impotence, orthostatic hypotension, diarrhoea-constipation, pupillary abnormalities)
  - Neuropathic pain
- Later other sensory modalities and motor involvement
- Cardiac arrhythmias, weight loss
- · Frequent family history, high penetrance
- · Relatively slow progression





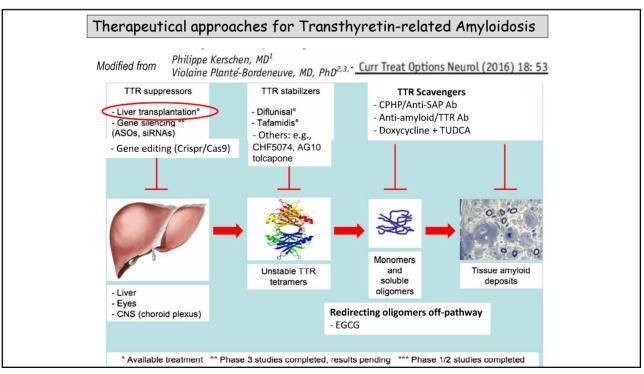


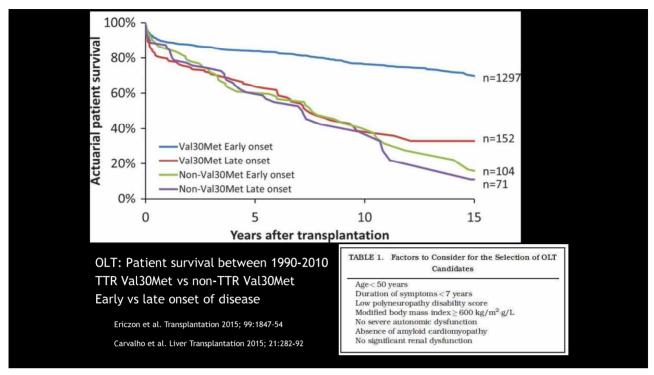


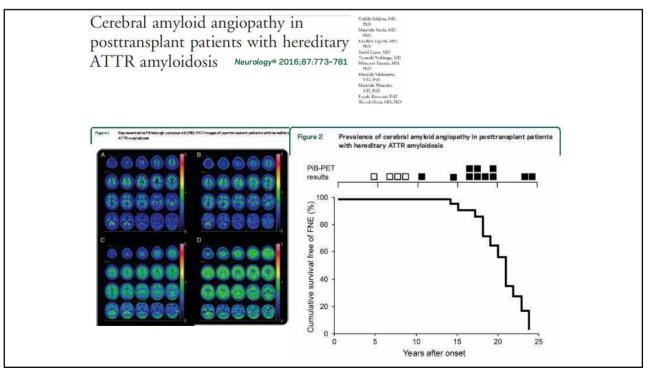




#### hATTR in non-endemic countries

- √ Late onset, > 50 yrs (55-60 mean, onset > 80)
- ✓ Val30Met 25-30%, other mutations frequent
- ✓ Frequent sporadic presentation, incomplete penetrance
- ✓ Male predominance (2-3:1)
- ✓ All fibre involvement (all sensory modalities, early motor involvement)
- ✓ Subtle dysautonomia
- ✓ Fast progression
- ✓ Carpal tunnel syndrome Fasciculations
- ✓ Atypical presentations: ataxic type, motor predominant (ALS-mimicking), upper limb predominance, cranial nerves
- ✓ Difficult diagnosis, frequent misdiagnosis, delay by 2-5 years


|                                 | res between early-onset and la<br>. Orphanet Journal of Rare Dise |                                                        |
|---------------------------------|-------------------------------------------------------------------|--------------------------------------------------------|
| Clinical feature                | Early onset                                                       | <u>Late onset</u>                                      |
| Age of onset of symptoms        | 25-45                                                             | >=50                                                   |
| Penetrance                      | High                                                              | Low                                                    |
| Family history of ATTR-FAP      | Common                                                            | Frequently absent                                      |
| Mutation(s)                     | Val30Met                                                          | Val30Met + other mutations                             |
| Pattern of neuropathic symptoms | Small fibres first and more (>thermal-pain sensory loss)          | All sensory modalities Early distal motor involv.      |
| Autonomic dysfunction           | Severe, life-threatening                                          | Relatively mild                                        |
| Heart                           | AV block requiring PM implantation                                | Frequent presence of cardiomegaly                      |
| Gender                          | Both genders affected                                             | Male predominance                                      |
| Course                          | Relatively slower                                                 | Fast                                                   |
| Amyloid type                    | B = full length TTR, high affinity for Congo Red                  | A = fragments + full length,<br>low Congo Red affinity |




- FAP Stage 1: unimpaired ambulation
- FAP Stage 2: assistance with ambulation required
- FAP Stage 3: wheelchair-bound or bedridden
- PND I: sensory disturbances but preserved walking capability
- PND II: impaired walking capability but ability to walk without a stick or crutches
- PND IIIA: walking only with the help of one stick or crutch
- PND IIIB: walking with the help of two sticks or crutches
- PND IV: confined to a wheelchair or bedridden

Ando Y et al. Orphanet Journal of Rare Diseases. 2013;8:31.

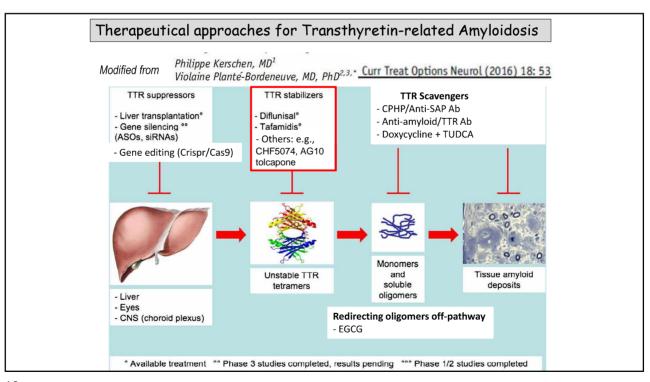


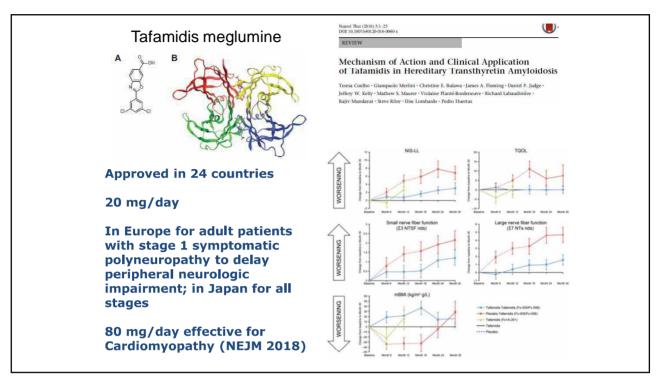


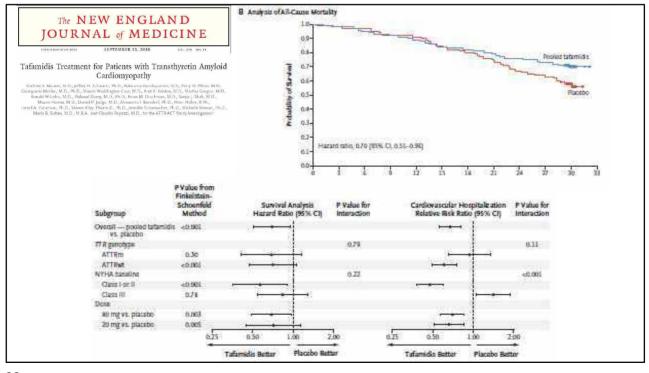


### Impact of liver transplantation on the natural history of oculopathy in Portuguese patients with transthyretin (V30M) amyloidosis

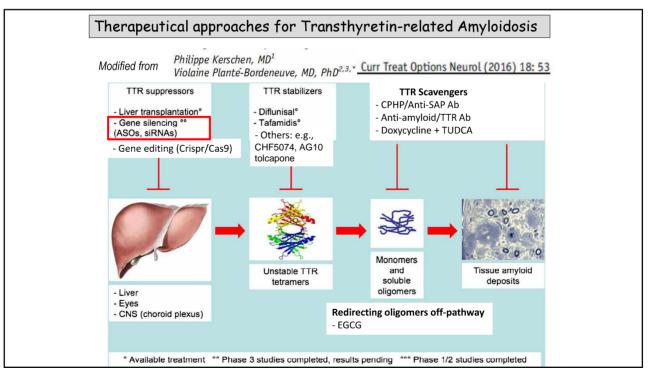
João Melo Beirão<sup>1,2,3</sup>, Jorge Malheiro<sup>3</sup>, Carolina Lemos<sup>4</sup>, Eduarda Matos<sup>3</sup>, Idalina Beirão<sup>2,3</sup>, Paulo Pinho-Costa<sup>3,5</sup>, and Paulo Torres<sup>1,3</sup>


Amyloid, 2015; 22(1): 31–35


Table 2. Prevalence of ocular manifestations (global and both non-liver-transplanted (non-LT) and liver-transplanted (LT) patients).


|                               | Total $(N=128)$ | Non-LT $(N = 64)$ | LT (N = 64) | p Values  |
|-------------------------------|-----------------|-------------------|-------------|-----------|
| ACV, n (%)                    | 22 (17.2%)      | 12 (18.8%)        | 10 (15.5%)  | p = 0.639 |
| Positive Schirmer test, n (%) | 88 (68.8%)      | 52 (81.2%)        | 36 (56.2%)  | p = 0.002 |
| Positive TBUT, n (%)          | 106 (82.8%)     | 54 (84.4%)        | 52 (81.2%)  | p = 0.639 |
| Amyloid, Iris, n (%)          | 31 (24.2%)      | 14 (21.9%)        | 17 (26.6%)  | p = 0.536 |
| Scalloped Iris, n (%)         | 22 (17.2%)      | 12 (18.8%)        | 10 (15.6%)  | p = 0.639 |
| Amyloid, Lens, n (%)          | 26 (20.3%)      | 10 (15.6%)        | 16 (25.0%)  | p = 0.187 |
| Amyloid, vitreous, n (%)      | 17 (13.3%)      | 7 (10.9%)         | 10 (15.6%)  | p = 0.435 |
| Retinal angiopathy, n (%)     | 1 (0.8%)        | 1 (1.6%)          | 0 (0%)      | p = 0.315 |
| Glaucoma, n (%)               | 11 (8.6%)       | 5 (7.8%)          | 6 (9.4%)    | p = 0.752 |

Conclusions: Ocular manifestations of FAP were not influenced by liver transplantation in a meaningful way. Both transplanted and non-transplanted FAP patients need similar regular follow-up due to long-term risk of serious ocular disease.


17













#### ORIGINAL ARTICLE

#### Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis

M.D. Benson, M. Waddington-Cruz, J.L. Berk, M. Polydefkis, P.J. Dyck, A.K. Wang, V. Planté-Bordeneuve, F.A. Barroso, G. Merlini, L. Obici, M. Scheinberg, T.H. Brannagan III, W.J. Litchy, C. Whelan, B.M. Drachman, D. Adams, S.B. Heitner, I. Conceição, H.H. Schmidt, G. Vita, J.M. Campistol, J. Gamez, P.D. Gorevic, E. Gane, A.M. Shah, S.D. Solomon, B.P. Monia, S.G. Hughes, T.J. Kwoh, B.W. McEvoy, S.W. Jung, B.F. Baker, E.J. Ackermann, M.A. Gertz, and T. Coelho

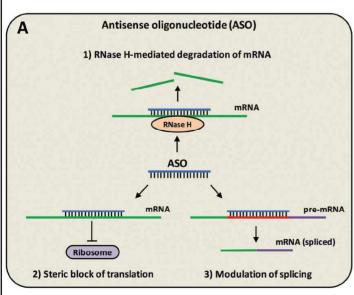
## The NEW ENGLAND JOURNAL of MEDICINE

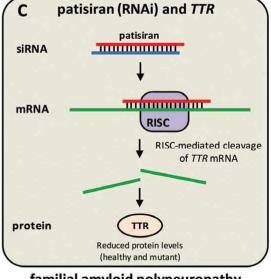
ESTABLISHED IN 1812

JULY 5, 2018

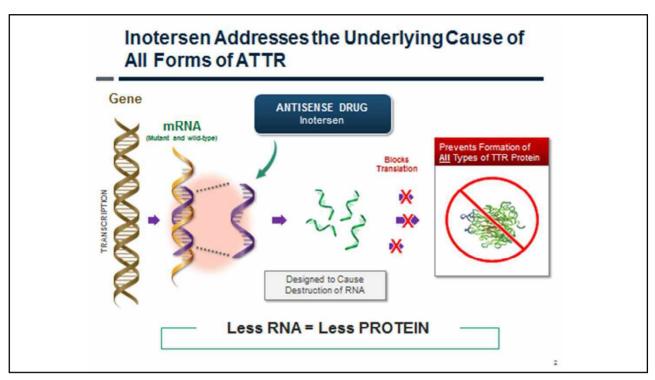
VOL. 379 NO. 1

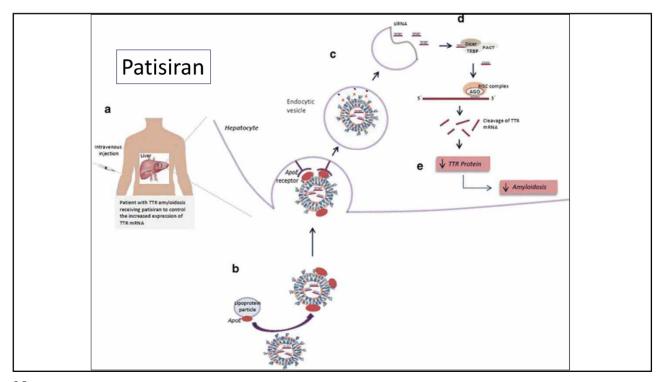
#### Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis


D. Adams, A. Gonzalez-Duarte, W.D. O'Riordan, C.-C. Yang, M. Ueda, A.V. Kristen, I. Tournev, H.H. Schmidt, T. Coelho, J.L. Berk, K.-P. Lin, G. Vita, S. Attarian, V. Planté-Bordeneuve, M.M. Mezei, J.M. Campistol, J. Buades, T.H. Brannagan III, B.J. Kim, J. Oh, Y. Parman, Y. Sekijima, P.N. Hawkins, S.D. Solomon, M. Polydefkis, P.J. Dyck, P.J. Gandhi, S. Goyal, J. Chen, A.L. Strahs, S.V. Nochur, M.T. Sweetser, P.P. Garg, A.K. Vaishnaw, J.A. Gollob, and O.B. Suhr


23

### Antisense oligonucleotides and other genetic therapies made simple


Rossor AM, et al. Pract Neurol 2018;18:126-131.


Alexander M Rossor, 1,2 Mary M Reilly, 1 James N Sleigh2



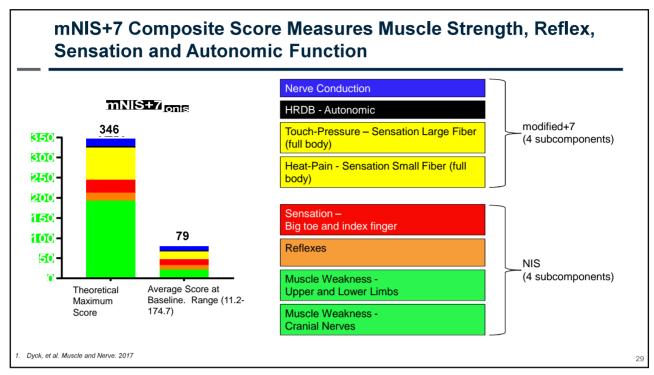


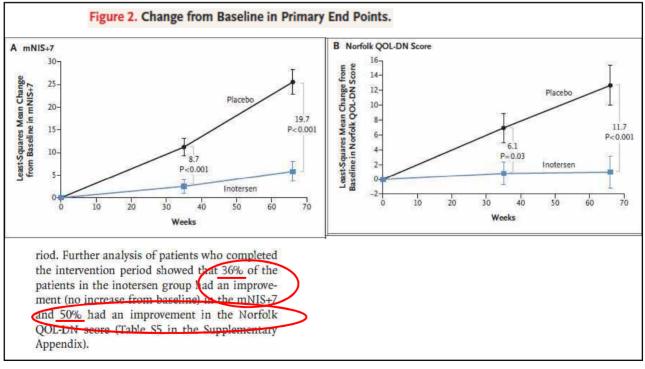
familial amyloid polyneuropathy

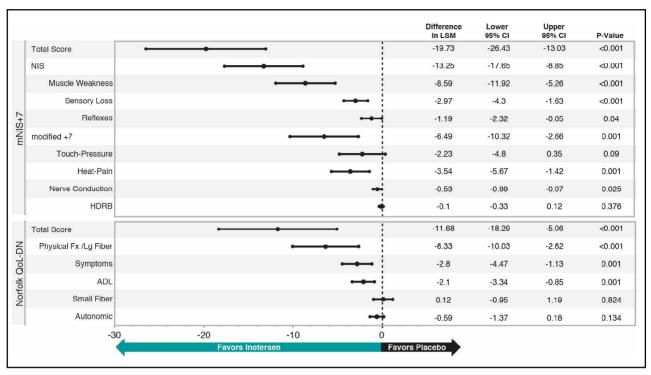


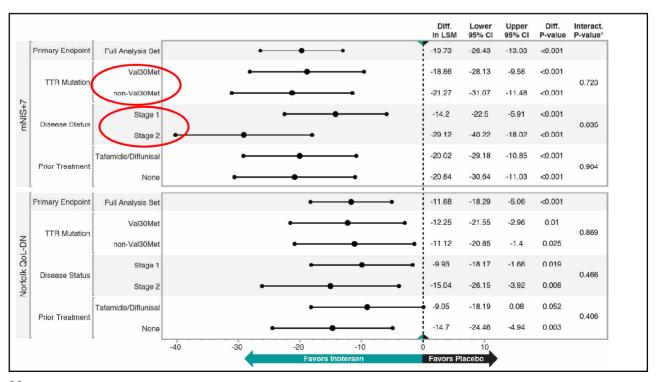


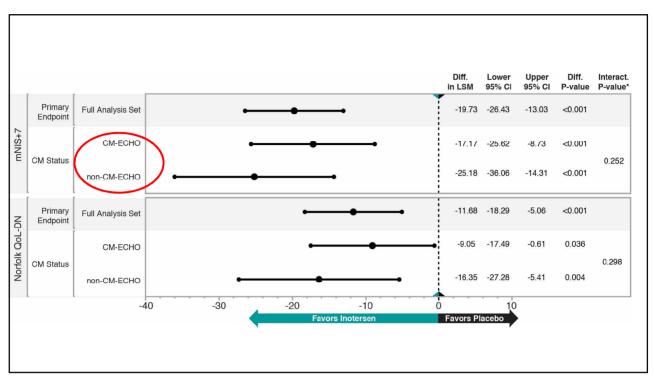
| Compound - Study      | Inotersen – Neuro-TTR (Ionis-Akcea)    | Patisiran – Apollo (Alnylam)           |  |  |
|-----------------------|----------------------------------------|----------------------------------------|--|--|
|                       | Anti-Sense Oligonucleotides            | RNAi lipid nanoparticles               |  |  |
| Mechanism             | Bind to wild type and mutated TTR mRNA |                                        |  |  |
| TTR reduction         | 75-79%                                 | 84%; 87.8% mean max serum reduction    |  |  |
| Route                 | Subcutaneously - once a week           | Intravenously - every 3 weeks          |  |  |
| Study Phase           | Phase 3 completed, OLE ongoing         | Phase 3 completed, OLE ongoing         |  |  |
| Ratio treated:placebo | 2:1                                    | 2:1                                    |  |  |
| Duration              | 15 months                              | 18 months                              |  |  |
| Primary Endpoints     | Norfolk QoL, mNIS+7                    | mNIS+7                                 |  |  |
| Participants          | 172 randomised,                        | 225 randomised                         |  |  |
|                       | 150 completed                          | 193 completed                          |  |  |
|                       | 17 treated dropped out                 | 29 placebo dropped out                 |  |  |
|                       | Norfolk = 12 points difference at 15   | Norfolk = 21.1 points difference at 18 |  |  |
|                       | months; 50% stabilised or improved     | months; 51.4% "improved"               |  |  |
| Outcome               | mNIS+7 = 20 points difference at 15    | mNIS+7 = 33.99 point difference at 18  |  |  |
|                       | months; 36% stabilised or improved     | months; 56% "improved"                 |  |  |
|                       | Independent from disease stage,        | Independent from disease stage,        |  |  |
|                       | presence of cardiomyopathy, type of    | presence of cardiomyopathy, type of    |  |  |
|                       | mutation                               | mutation                               |  |  |
| Side effects          | Thrombocytopenia (4 cases, 1           | Infusion related reactions,            |  |  |
|                       | death); 6 renal problems               | peripheral edema                       |  |  |

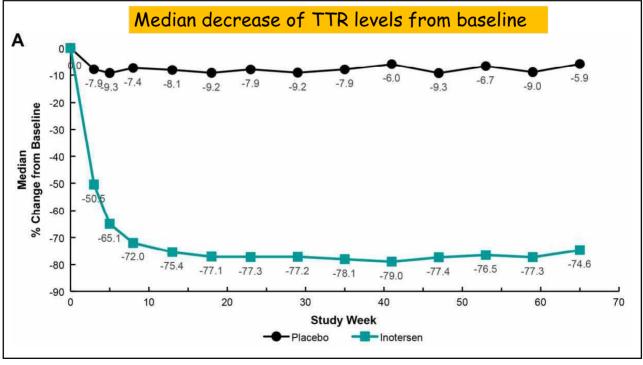

27

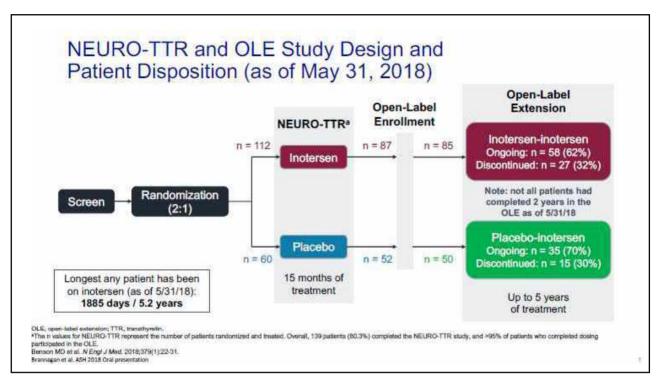

#### The NEW ENGLAND JOURNAL of MEDICINE

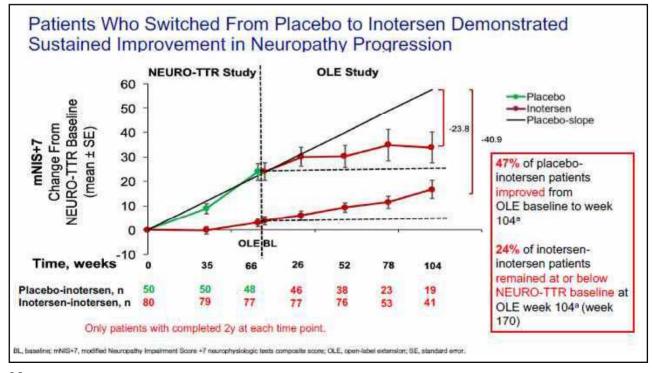

#### ORIGINAL ARTICLE

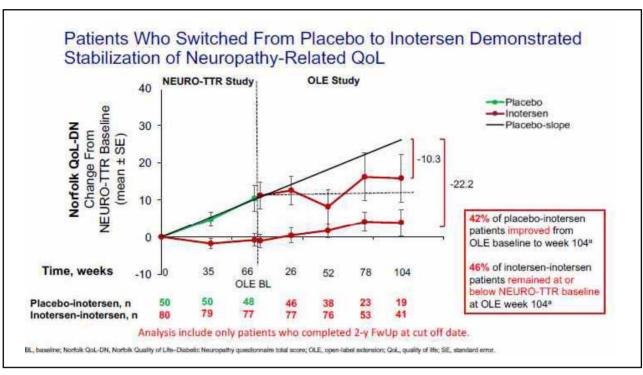

### Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis


M.D. Benson, M. Waddington-Cruz, J.L. Berk, M. Polydefkis, P.J. Dyck, A.K. Wang, V. Planté-Bordeneuve, F.A. Barroso, G. Merlini, L. Obici, M. Scheinberg, T.H. Brannagan III, W.J. Litchy, C. Whelan, B.M. Drachman, D. Adams, S.B. Heitner, I. Conceição, H.H. Schmidt, G. Vita, J.M. Campistol, J. Gamez, P.D. Gorevic, E. Gane, A.M. Shah, S.D. Solomon, B.P. Monia, S.G. Hughes, T.J. Kwoh, B.W. McEvoy, S.W. Jung, B.F. Baker, E.J. Ackermann, M.A. Gertz, and T. Coelho





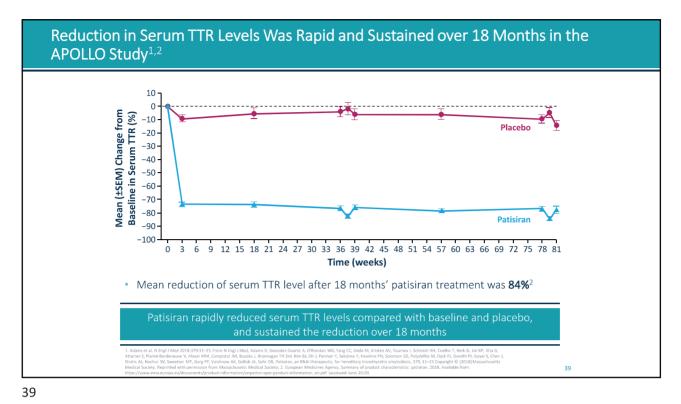


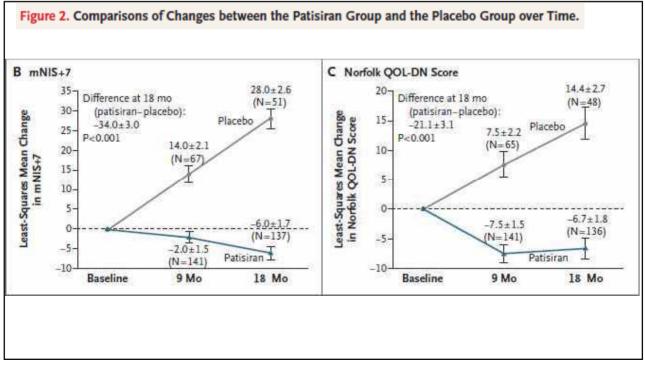


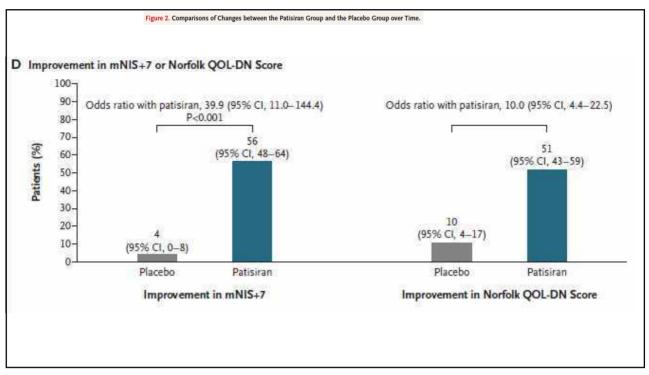


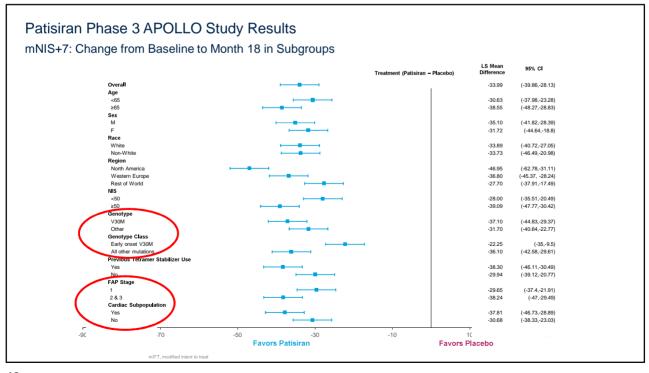


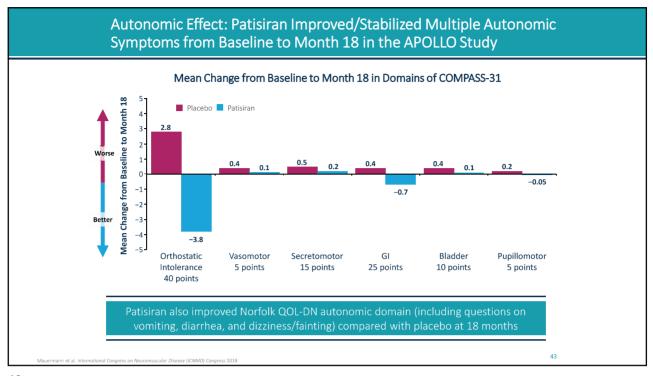

# The NEW ENGLAND JOURNAL of MEDICINE

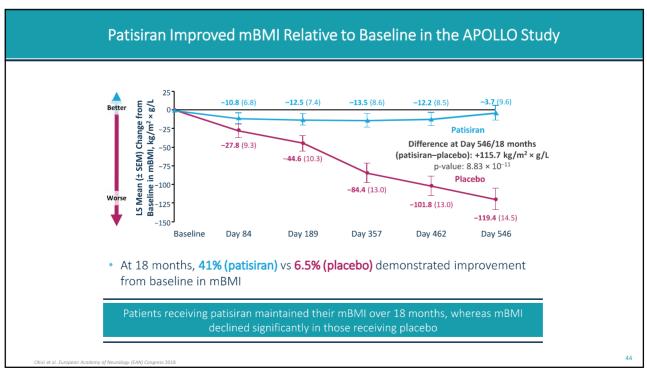

ESTABLISHED IN 1812

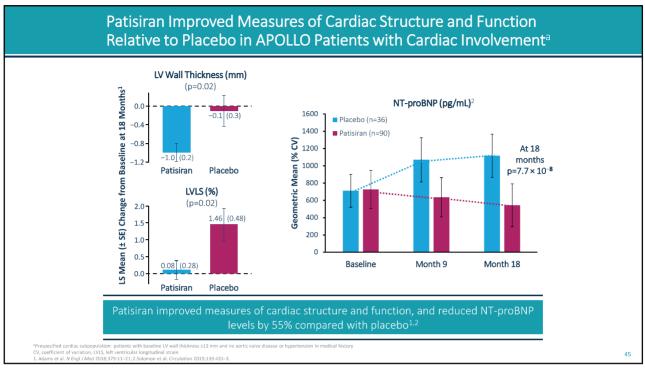

JULY 5, 2018

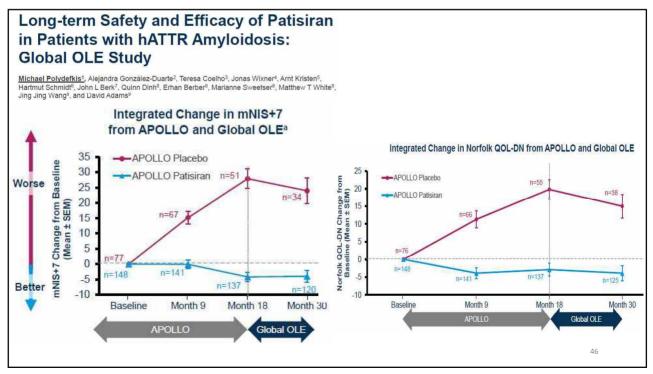

VOL. 379 NO. 1


### Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis

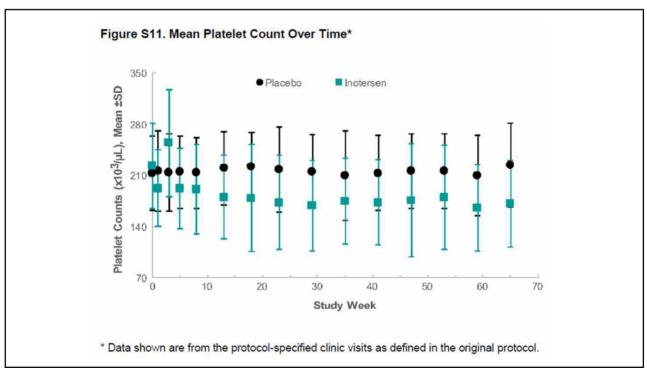

D. Adams, A. Gonzalez-Duarte, W.D. O'Riordan, C.-C. Yang, M. Ueda, A.V. Kristen, I. Tournev, H.H. Schmidt, T. Coelho, J.L. Berk, K.-P. Lin, G. Vita, S. Attarian, V. Planté-Bordeneuve, M.M. Mezei, J.M. Campistol, J. Buades, T.H. Brannagan III, B.J. Kim, J. Oh, Y. Parman, Y. Sekijima, P.N. Hawkins, S.D. Solomon, M. Polydefkis, P.J. Dyck, P.J. Gandhi, S. Goyal, J. Chen, A.L. Strahs, S.V. Nochur, M.T. Sweetser, P.P. Garg, A.K. Vaishnaw, J.A. Gollob, and O.B. Suhr

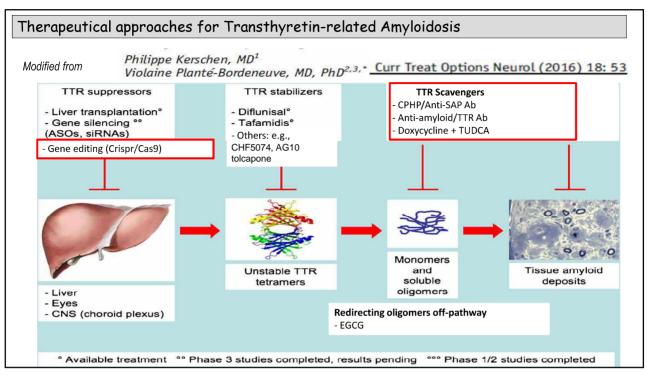


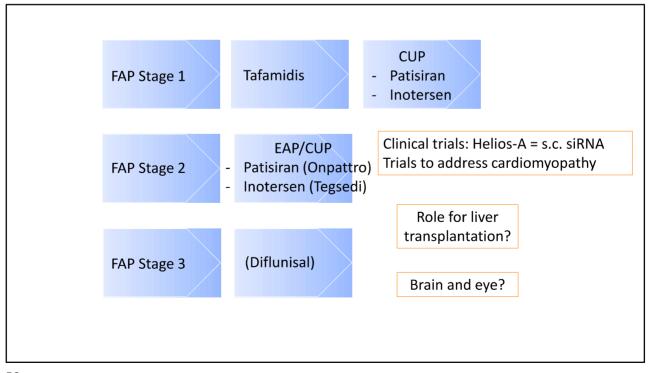








|                                      |                                         |                | Table 3. Safety and Side Effects.                                 |                     |                      |
|--------------------------------------|-----------------------------------------|----------------|-------------------------------------------------------------------|---------------------|----------------------|
|                                      | PATISIRAN                               | l (RNAi)       | Event                                                             | Placebo<br>(N=77)   | Patisiran<br>(N=148) |
|                                      |                                         |                |                                                                   | no. of patients (%) |                      |
|                                      |                                         |                | Any adverse event                                                 | 75 (97)             | 143 (97)             |
|                                      |                                         |                | Adverse events occurring in ≥10% of pa-<br>tients in either group |                     |                      |
|                                      | 7                                       |                | Diarrhea                                                          | 29 (38)             | 55 (37)              |
| INOTERSEN (ASO)                      |                                         |                | Edema, peripheral                                                 | 17 (22)             | 44 (30)              |
| HIGTERSEN (780)                      |                                         |                | Fall                                                              | 22 (29)             | 25 (17)              |
| Table 2. Summary of Adverse Events.* |                                         | Nausea         | 16 (21)                                                           | 22 (15)             |                      |
| Table 2. Summary of Adverse Events.  |                                         |                | Infusion-related reaction                                         | 7 (9)               | 28 (19)              |
|                                      | Placebo                                 | Inotersen      | Constipation                                                      | 13 (17)             | 22 (15)              |
| Event                                | (N = 60)                                | (N=112)        | Urinary tract infection                                           | 14 (18)             | 19 (13)              |
|                                      | no. of pat                              | tients (%)     | Dizziness                                                         | 11 (14)             | 19 (13)              |
| - great to say the serve and serve   | 100000000000000000000000000000000000000 | SO THE CARD SE | Fatigue                                                           | 8 (10)              | 18 (12)              |
| Any adverse event                    | 60 (100)                                | 111 (99)       | Headache                                                          | 9 (12)              | 16 (11)              |
| Event related to trial regimen†      | 23 (38)                                 | 87 (78)        | Cough                                                             | 9 (12)              | 15 (10)              |
| Any serious adverse event            | 13 (22)                                 | 36 (32)        | Vomiting                                                          | 8 (10)              | 15 (10)              |
| Event related to trial regiment      | 1 (2)                                   | 8 (7)          | Asthenia                                                          | 9 (12)              | 14 (9)               |
| Glomerulonephritis                   | 0                                       | 3 (3)立         | Insomnia                                                          | 7 (9)               | 15 (10)              |
|                                      |                                         |                | Nasopharyngitis                                                   | 6 (8)               | 15 (10)              |
| Thrombocytopenia                     | 0                                       | 2 (2)          | Pain in extremity                                                 | 8 (10)              | 10 (7)               |
| Deep-vein thrombosis                 | 1 (2)                                   | 1 (<1)         | Muscular weakness                                                 | 11 (14)             | 5 (3)                |
| Intracranial hemorrhage              | 0                                       | 1 (<1)         | Anemia                                                            | 8 (10)<br>8 (10)    | 3 (2)                |
| Tubulointerstitial nephritis         | 0                                       | 1 (<1)¶        | Syncope  Adverse event leading to discontinuation                 | 11 (14)             | 3 (2)<br>7 (5)       |
| Pulmonary embolism                   | 0                                       | 1 (<1)         | of the trial regimen                                              | 11 (14)             | 7 (3)                |
| Embolic stroke                       | 0                                       | 1 (<1)         | Adverse event leading to withdrawal from<br>the trial             | 9 (12)              | 7 (5)                |
| Myelopathy                           | 0                                       | 1 (<1)         | Death                                                             | 6 (8)               | 7 (5)                |
| Death                                | 0                                       | 5 (4)          | Any serious adverse event                                         | 31 (40)             | 54 (36)              |
| 72578A                               | ≅                                       | 2.10           | Any severe adverse event                                          | 28 (36)             | 42 (28)              |







#### Much better scenario but novel problems

When to start treament? Definition of disease start (from presymptomatic to symptomatic, how to monitor presymptomatic subjects). Treatment in the presymptomatic phase?

Is there still a role for liver transplantation?

Tafamidis in early phases (20 mg/die; 80 mg/die?) / or siRNA-ASO?

Diflunisal in advanced stages

Combined treatments?

Address brain and eye

i.v. versus s.c - safety (new ASOs and siRNAs)

Gene silencing for cardiomyopathy (trials)

Economic sustainability

51



#### Overall Safety in the Global OLE **APOLLO** APOLLO Phase 2 OLE Global OLE Patients with ≥1 Placebo Patisiran Patisiran Total Event, n (%) n=49 n=25 n=211 AE 48 (98) 131 (96) 25 (100) 204 (97) Severe AE 23 (47) 35 (26) 3 (12) 61 (29) 28 (57) 48 (35) 6 (24) 82 (39) SAE IRR 13 (27) 10 (7) 2 (8) 25 (12) AE leading to 0 15 (31) 11 (8) 26 (12) study withdrawal 0 Death<sup>a</sup> 13 (27) 10 (7) 23 (11) Integrated Exposure Adjusted Mortality Rates<sup>b</sup> Phase 2 OLE Global OLE **APOLLO APOLLO** Placebo **Patisiran Patisiran** n=148 n=49 n=224 n=27 Deathsa, n (%) 13 (27) 15 (10) 2(7) 30 (13) Exposure-Adjusted Mortality 18.9 Rate (CI), deaths (0.3, 5.2)(10.4, 31.2) (2.0, 5.4)(3.3, 6.7)per 100 patientyears