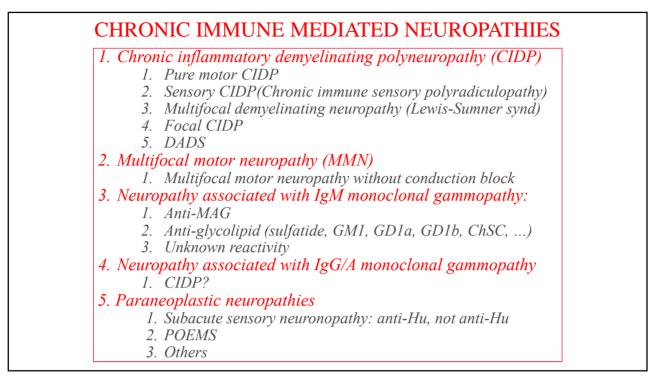


5th Congress of the European Academy of Neurology

Oslo, Norway, June 29 - July 2, 2019

Teaching Course 3

EAN/PNS: Novel approach in the treatment of neuropathy (Level3)


Novel therapies in immune-mediated neuropathies

Eduardo Nobile-Orazio Milan, Italy

Email: eduardo.nobile@unimi.it

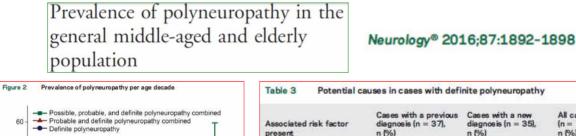
60

50

40 (%) Prevalence 30

20

10


50-60

>60-70

>70-80

Age group (years)

>80

Associated risk factor present	Cases with a previous diagnosis (n = 37), n (%)	Cases with a new diagnosis (n = 35), n (%)	All cases (n = 72), n (%)
Diabetes	17 (46)	5 (14)	22 (31)
Vitamin deficiency*	4 (11)	6 (17)	10 (14)
Possible alcohol abuse ^b	2 (5)	1 (3)	3 (4)
Toxic	3 (8)	1 (3)	4 (6)
Hereditary	1 (3)	-	1 (1)
Immune-mediated ^e	4 (11)	3 (9)	7 (10)
Thyroid dysfunction	2 (5)	3 (9)	5 (7)
Renal failure	4 (11)	1 (3)	5 (7)
Systemic disease ^d	2 (5)	-	2 (3)
No risk factor present/CIAP	13 (35)	20 (57)	33 (46)
Total	52 (141)	40 (114)	92 (128)

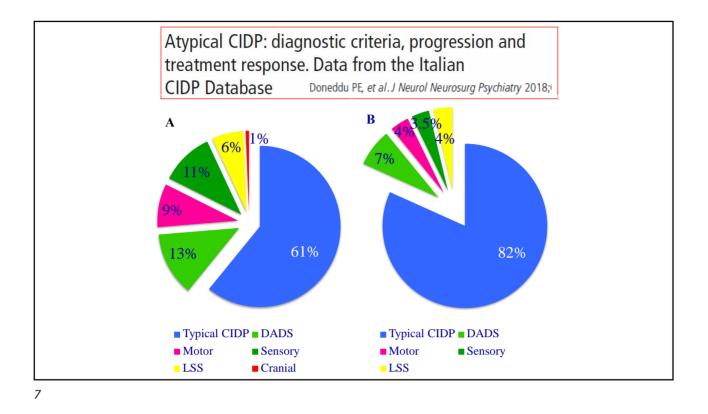
CHRONIC INFLAMMATORY DEMYELINATING **POLYRADICULONEUROPATHY (CIDP)**

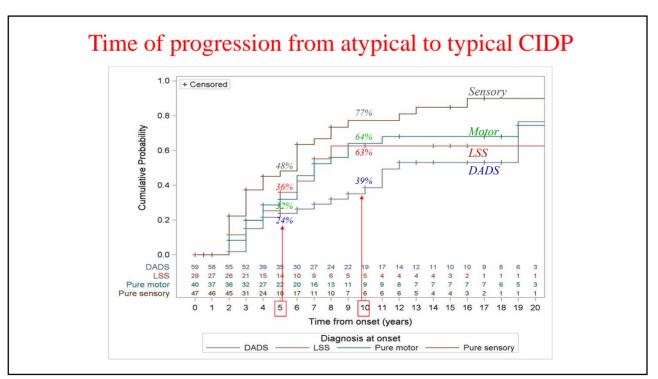
- **Rare diseases** with a prevalence of 1.24 to 8.9/100.000
- Chronic progressive, stepwise, or recurrent symmetric proximal and distal weakness and sensory dysfunction of two or **more extremities**, developing over at least 2 months; cranial nerves may be affected
- Absent or reduced tendon reflexes in all extremities
- Elevated cerebrospinal fluid protein with leukocyte count <</p> $10/mm^{3}$
- Electrophysiological and/or morphological features of a demyelinating neuropathy
- > 50% of patients severely disabled at some time

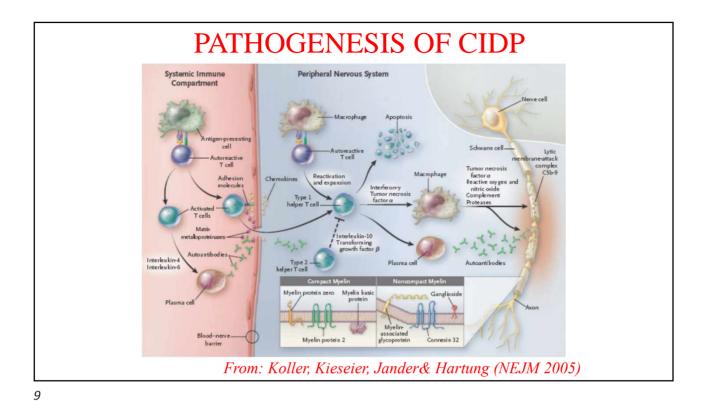
5

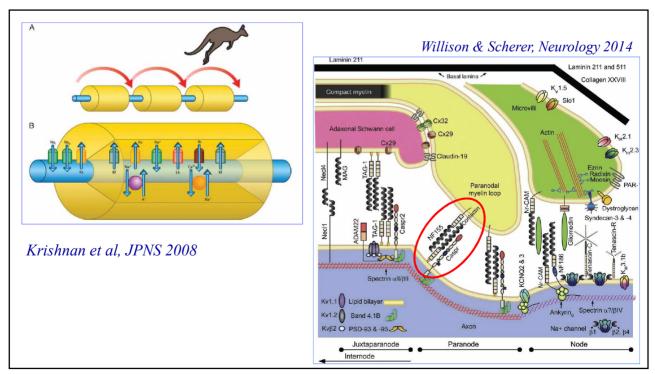
2010 EFNS/PNS Revised Criteria for CIDP

A Typical CIDP

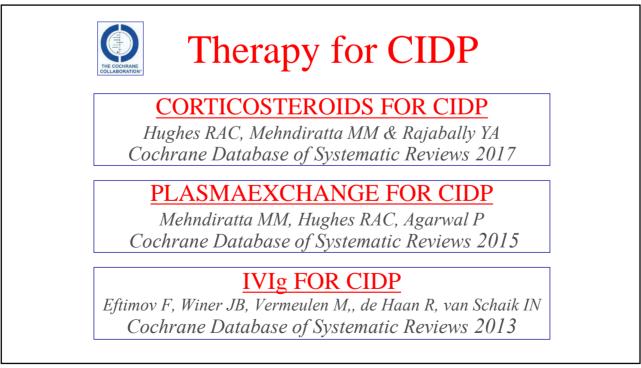

Chronically progressive, stepwise, or recurrent symmetric proximal and distal weakness and sensory dysfunction of all extremities, developping over at least 2 months; cranial nerves may be affected.

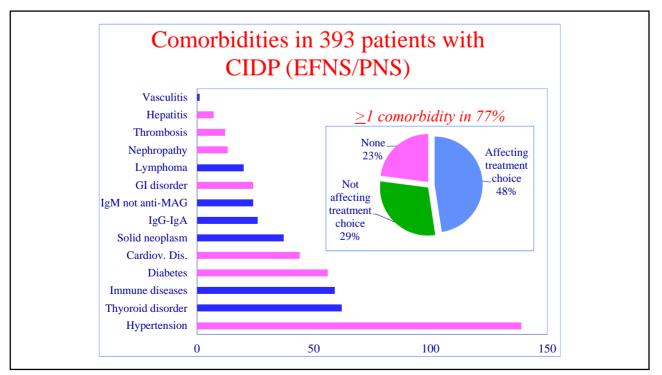

B Atypical CIDP


- Motor CIDP
- Sensory CIDP (including chronic immune sensory polyradiculopathy)
- Asymmetric CIDP (MADSAM; Lewis-Sumner • syndrome)
- Focal CIDP •
- DADS (Distal acquired demyelinating sym.)

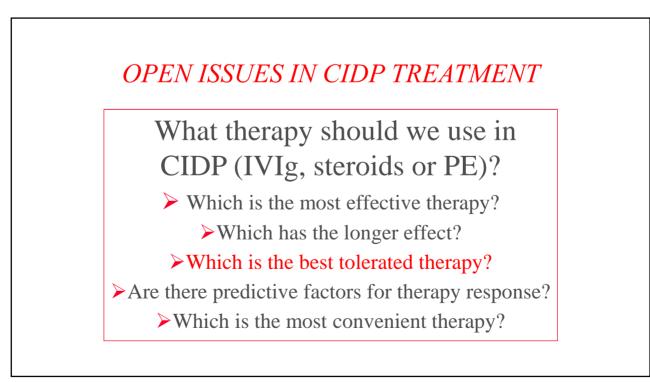

and Absent/reduced DTR in affected limbs

CIDP phenotypic variant	Estimated prevalence within CIDP
Typical CIDP	51%
Sensory CIDP	4–35 <mark>%</mark>
Chronic immune sensory polyradiculopathy	5–12%
Lewis-Sumner syndrome/ MADSAM	6–15%
Focal CIDP	1%
DADS	2–17%
Acute onset CIDP	2–16%
Motor CIDP	4-10%





Vodal antigens	r -v	oteins in		
Neurofascin 155	4/61 5/117 CIDP 0/16* CCPD 5/7	90/1403 (6.2%)	lgG4 lgG4, lgG3; lgM, lgA lgG	EUSA EUSA Cell-based assay
	CIDP 4/16* CCPD 6/7		Caspr 1 3/281 (1%)	EUSA
Neurofascin 186	1/50* 0/117*	6/1046 (0.6%)	lgG	Cell-based assay EUSA
Contactin-1	3/46† 1/50*	26/807 (3.2%)	lgG lgG	Cell-based assay Cell-based assay
*Frequency not significantly h fContactin-1/caspr-1 in one p		controls or other neuropathy cont	rols.	

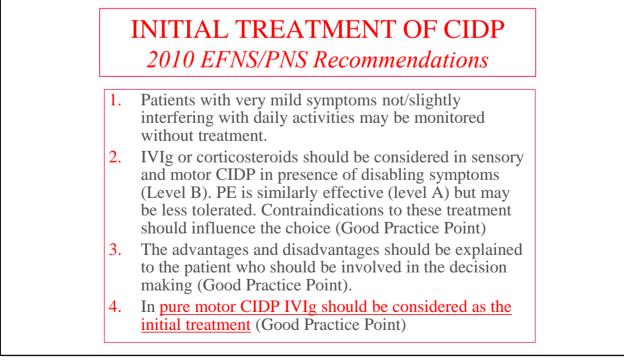


OPEN ISSUES IN CIDP TREATMENT

What therapy should we use in CIDP (IVIg, steroids or PE)?
Which is the most effective therapy?
Which has the longer effect?
Which is the best tolerated therapy?
Are there predictive factors for therapy response?
Which is the most convenient therapy?

methylpre	is immunoglobulin dnisolone for chron loneuropathy: a ran	ic inflammatory de	myelinating
Francesca Gallia, Angelo	Dario Cocito, Stefano Jann, Antonino Uncini, E Schenone, Ada Francia, Davide Pareyson, Luci batelli, for the IMC Trial Group*		
	IVMP (n=21)	IVIg (n=24)	p-value
	n (%)	n (%)	
Success	10 (47,6)	21 (87.5)	0.0085
	IVMP (n=10)	IVIg (n=21)	p-value
	n (%)	n (%)	
Relapse	0 (0)	8 (38.1)	0.0317
	I	Lance	t Neurol 201.

Frequency and time to relapse after discontinuing 6-month therapy with IVIg or pulsed methylprednisolone in CIDP Nobile-Orazio et al, JNNP 2014					
	IVIg (n=32)IVMP (n=24)p-value				
Improved	n (%) 28 (87.5)	n (%) 13 (54.2)	0.0072		
Median follow-up, months (<i>range</i>)	42 (1-57)	43 (7-60)	0.765		
Worsening at follow-up*	24/28 (85.7)	10/13 (76.9)	0.659		
Median months to relapse, <i>(range)</i>	4.5 (1-24)	14 (1-31)	0.0126		
* Including two patients v two who died 1 & 3 mon	who retired 1 & 7	months after the			

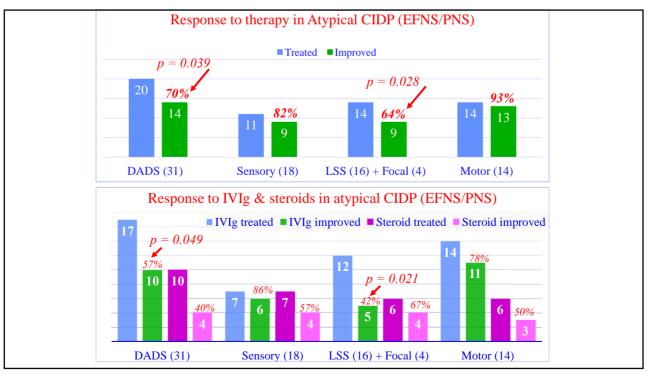


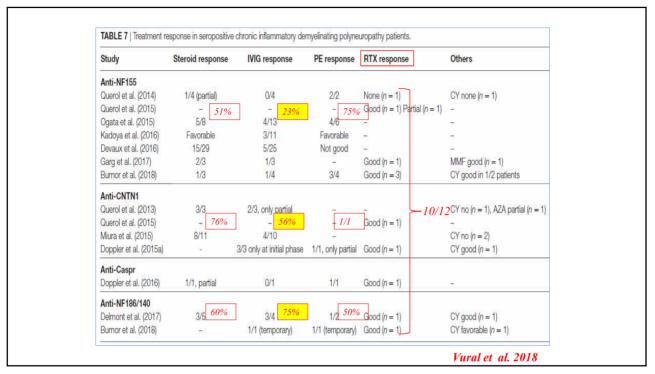
	Side-effect of therapy in CIDP						
Therapy	Responder	Non Respond.	Side Effect				
Steroids 136 (51%)	87 (64%)	49 (36%)	18 (13%)*				
IVIg 115 (43%)	90 (78%)	25 (22%)	5 (4%)*				
PE 16 (6%)	9 (56%)	7 (44%)	4 (25%)				
TOTAL 267	186 (69%)	81 (31%)					

according to the randomized controlled trials of IMC and PREDICT					
	IMC trial IVMP	Ref 25 IVIg	PREDICT Dexamethasone	Ref 20 Prednisolone 60 mg/day tapered to	
	2 g/month for 6 months	2 g/kg/month for 6 months	40 mg/month for 6 months	zero during 6–8 months	
No. of patients	21	24	24	16	
Weight gain	8%	0	4% [†]	38% [†]	
Cushing's face	NA	NA	25%	63%*	
Hyperglycemia	8%	4%	4%	19%	
Hypertension	14%	8%	14%	13%	
GI symptoms	13%	21%	34%	38%	
Insomnia	8%	0	38%‡	76%*	

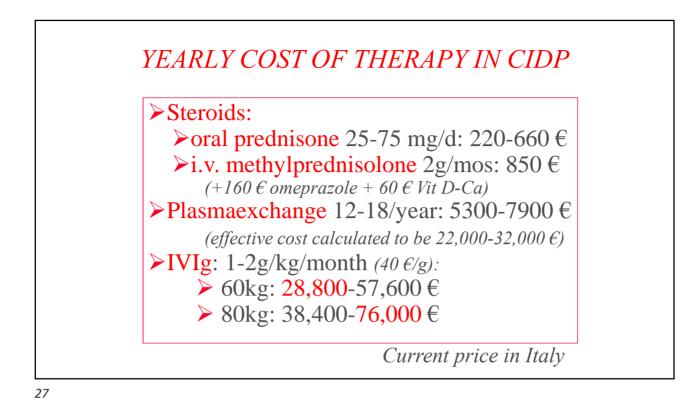
OPEN ISSUES IN CIDP TREATMENT

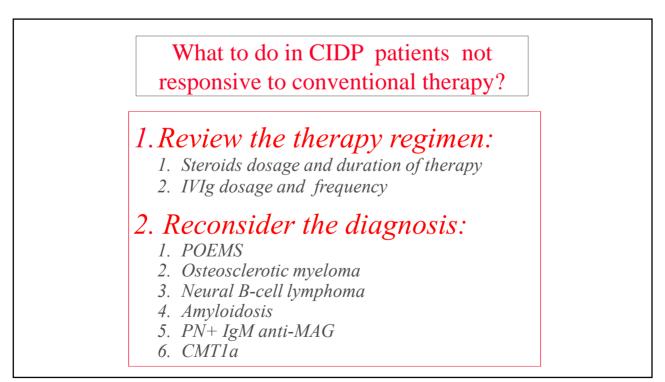
What therapy should we use in CIDP (IVIg, steroids or PE)?
Which is the most effective therapy?
Which has the longer effect?
Which is the best tolerated therapy?
Are there predictive factors for therapy response?
Which is the most convenient therapy?

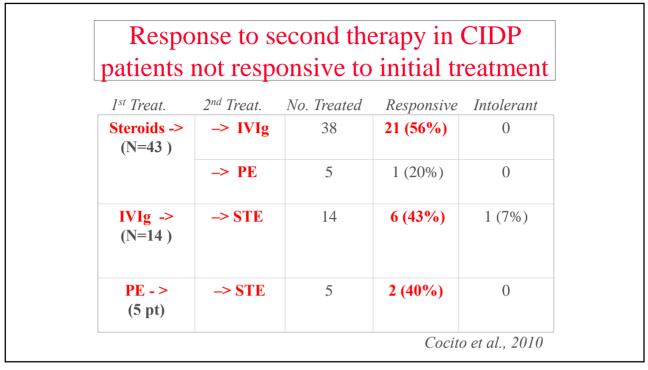


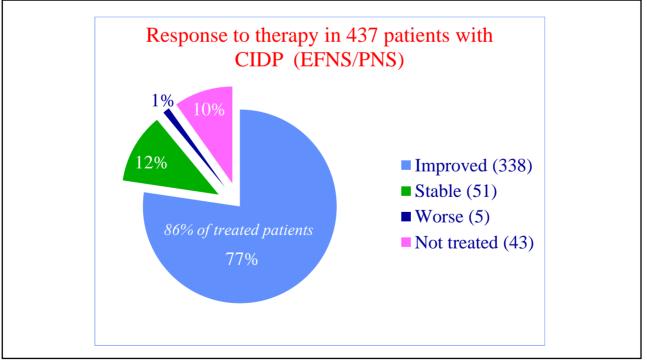

Different electrophysiological profiles and treatment response in 'typical' and 'atypical' chronic inflammatory demyelinating polyneuropathy

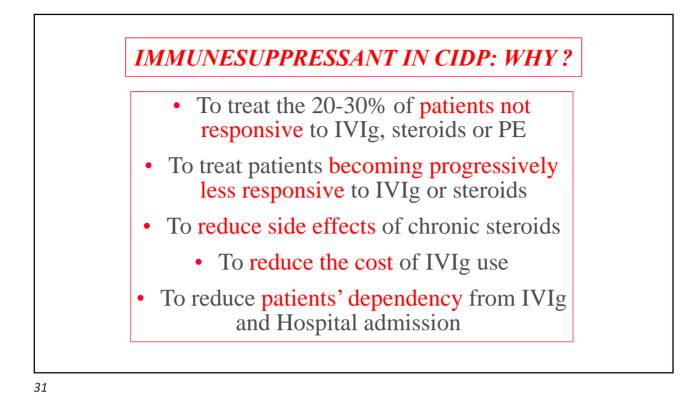

Satoshi Kuwabara, Sagiri Isose, Masahiro Mori, Satsuki Mitsuma, Setsu Sawai, Minako Beppu, Yukari Sekiguchi, Sonoko Misawa

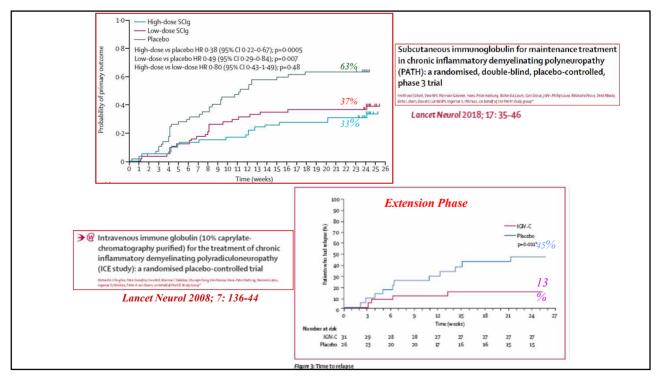

	Typical CIDP (n=51)	MADSAM (n=30)	p Value
Follow-up period (month)	65 (15-366)	82 (16-350)	NS
Treatment response			
Corticosteroid	83% (38/46)	72% (21/29)	NS
Immunoglobulin	87% (26/30)	38% (6/16)	< 0.001
Plasmapheresis	81% (13/16)	17% (1/6)	0.0049
No response to any of the above	0% (0/51)	23% (7/30)	< 0.001

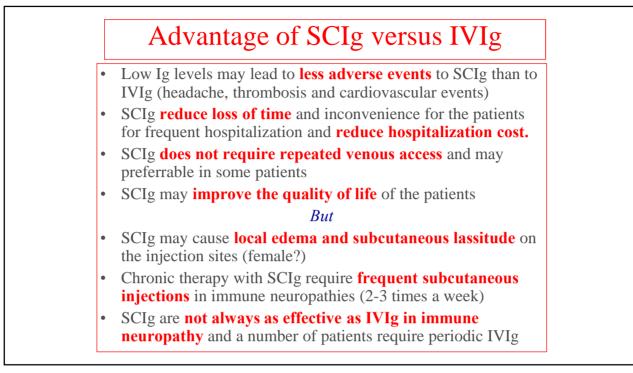

J Neurol Neurosurg Psychiatry 2014;0:1-6.

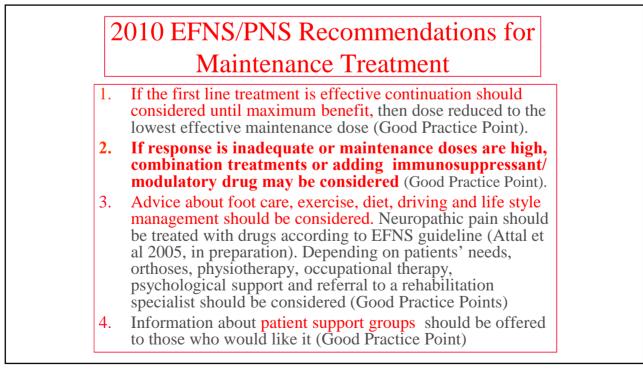


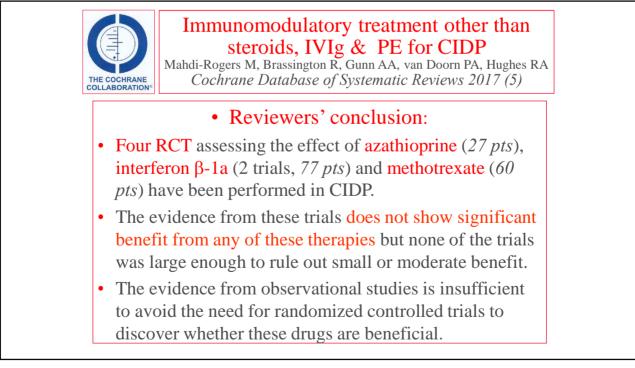


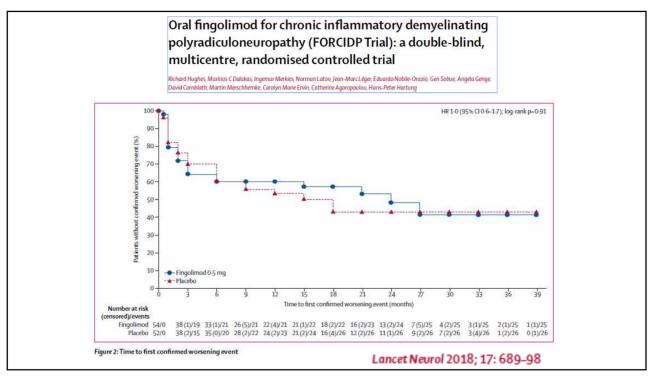


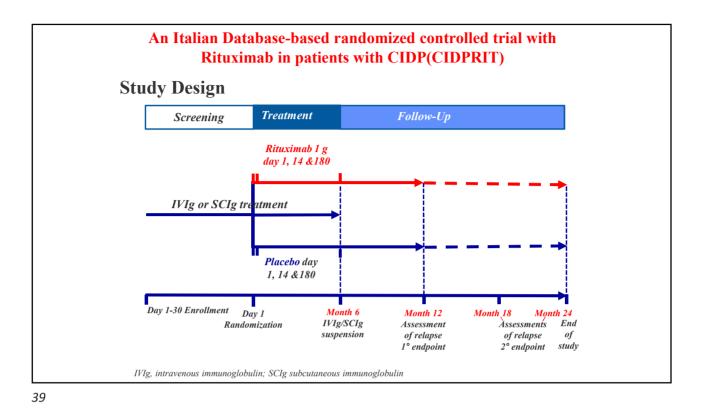


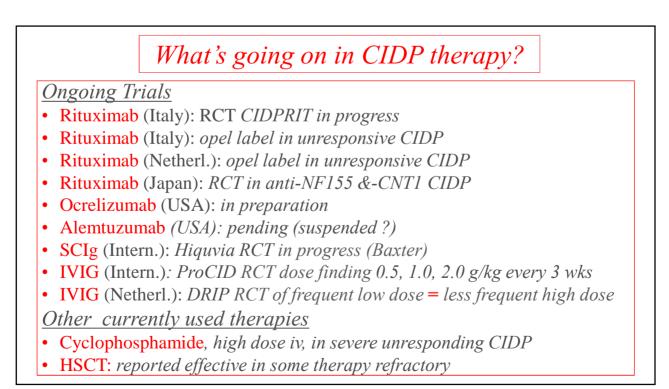


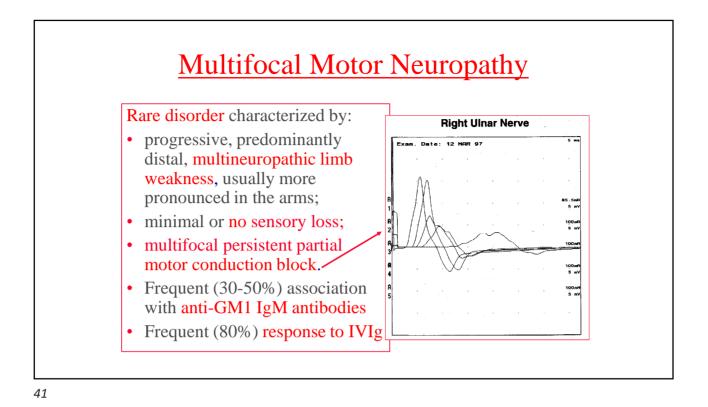




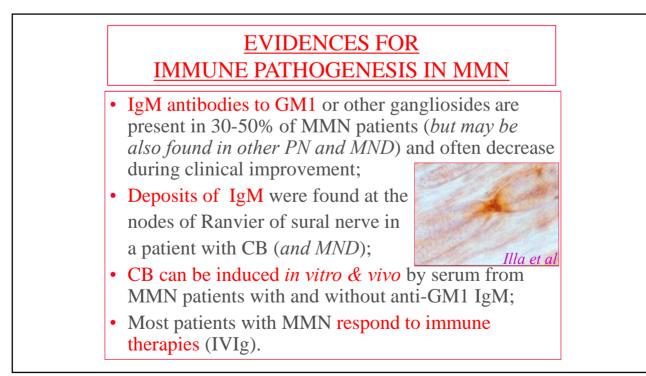


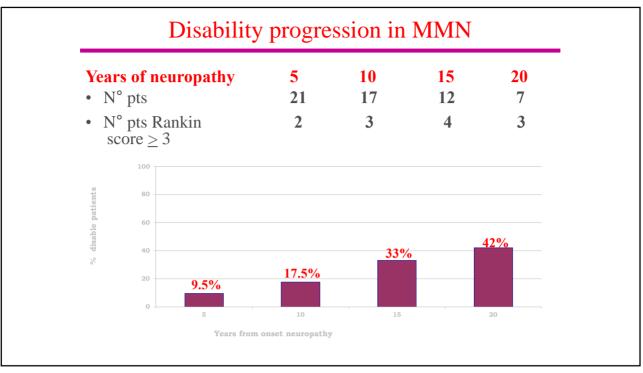


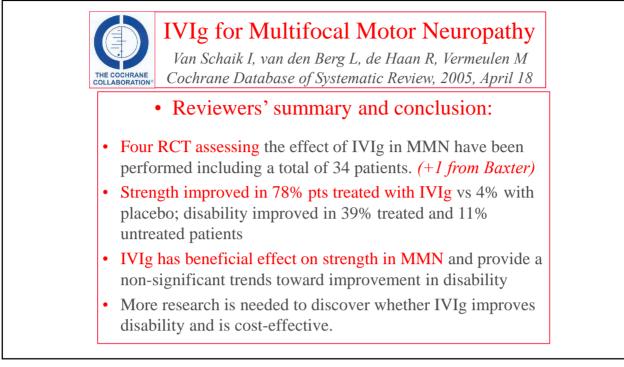

ficacy in open-trial of Imm and immunomodulatory dr	•••
1. Cyclosporin	82%
2. Cyclophosphamide	75%
3. Rituximab (anti-CD20)	75%
4. Methotrexate	70%
5. Azathioprine	64%
6. Interferon α	64%
7. Alentuzumab	57%
8. Mycophenolate mofetil	46%
9. Interferon β 1a	35%
10. Etanercept	30%
	30%

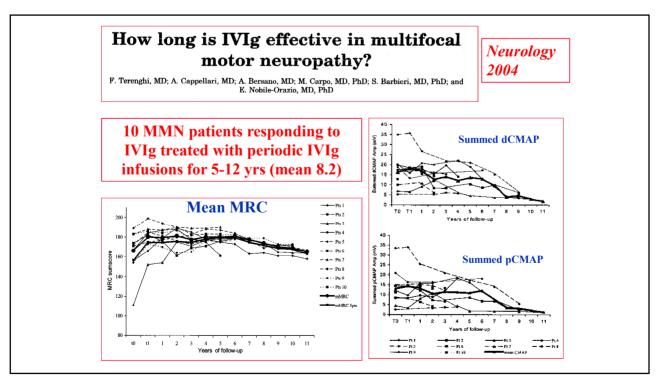


Series	Dose	Duration	No of patients	No improved	Notes
Bodley-Scott 2005	700 mg every 3 weeks	7 courses	1	1	Self-report
Briani 2004; Benedetti 2008; Benedetti 2011	375 mg m ² weekly	4 weeks	10	6	3 patients with IgM paraprotein in these series were excluded
D'Amico 2012	375 mg m ² weekly	not stated	1	ĩ	
Gorson 2007	375 mg/m ² weekly	4 weeks	2	1	
Knecht 2004	375 mg/m ² weekly	7 months	1	1	With associated Evans syndrome
Münch 2007	375 mg/m ² weekly	4 weeks	1	1	With type 2 diabetes
Sadnicka 2011	1 g every 2 weeks	2 doses	1	1	With Morvan's syndrome and myasthe- nia gravis
Total			17	12	71%

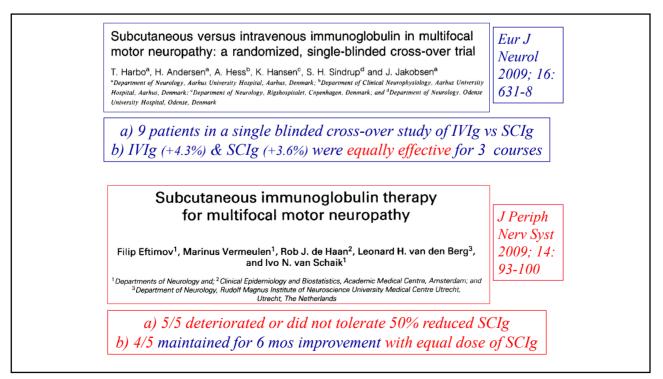


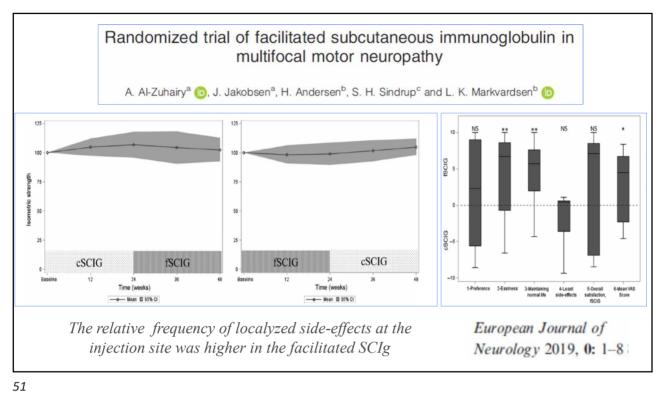


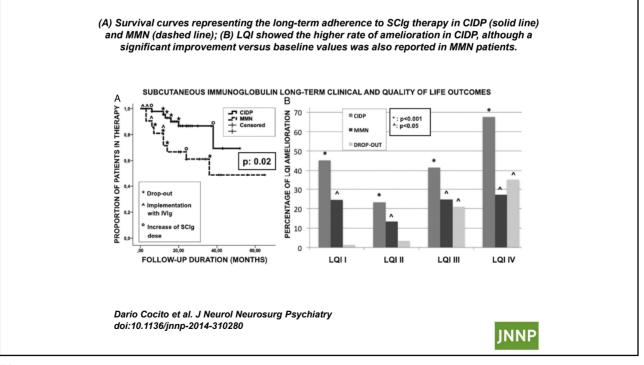

Disti	Distinguishing clinical features of MMN from CIDP, MDN, MND					
	CIDP	MDN	MMN	LMND		
Weakness Distribution	Symmetric	Multi- neuropathic	Multi- neuropathic	Often asymmetric		
Arms >legs	no	yes (40-70%)	yes (80%)	sometimes		
Distal>prox.	no	yes	yes	often		
Sensory loss	yes	yes	no	no		
Gen.Areflexia	yes	no	no	no		
Cranial/bulbar	yes	no	no	yes		



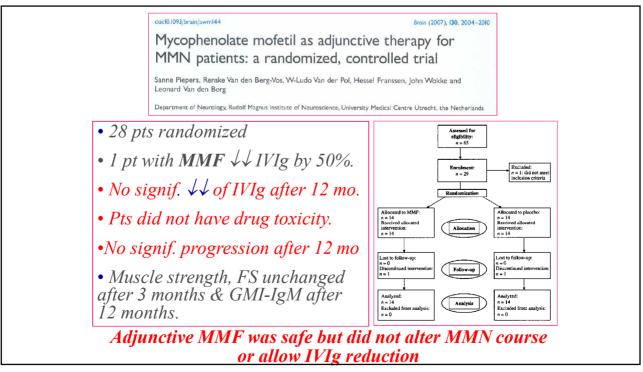
IMMUNE THERAPIES IN MMN No. (%) No. No. (%) Therapy treated improved worsened Steroids (alone) 64 (62) 7 (11%) 14(22%) Plasmaexch.(alone) 21 (20) 4 (20%) 2 (10%) **IVIg:** 383 ↓↓ impairment: 303/373 (81%) ↓↓ disability: 91/123 (74%)

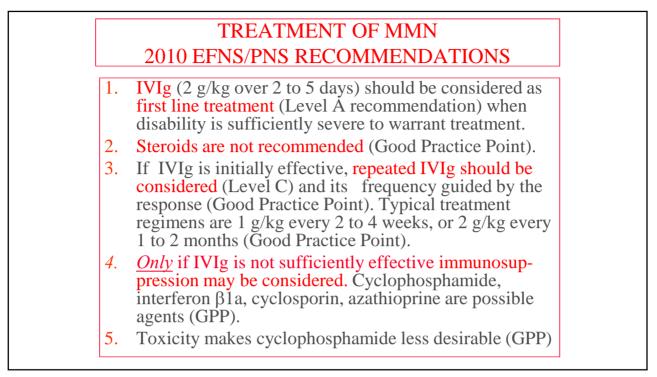


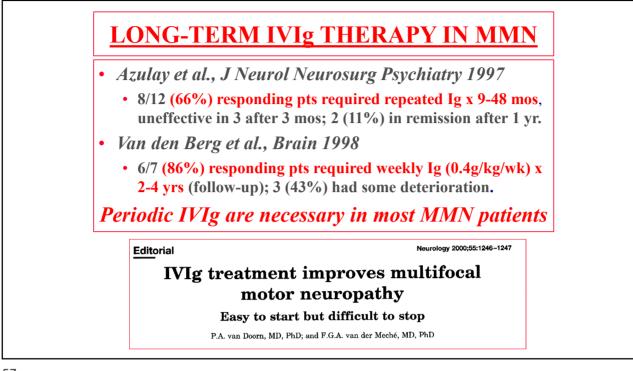




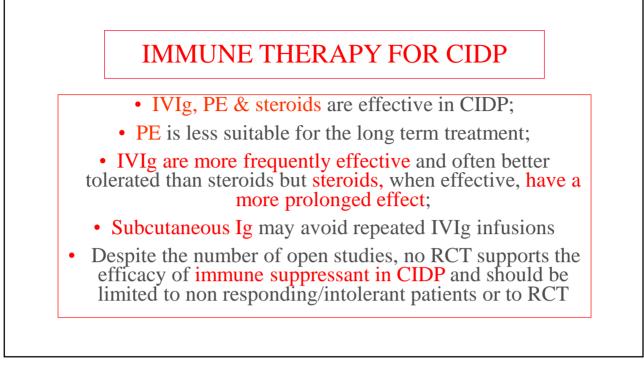
- To treat patients not responsive to IVIg
 - To treat patients progressively less responsive or unresponsive to IVIg
 - To reduce the cost of IVIg use
 - To reduce patients' dependency from IVIg and Hospital admission

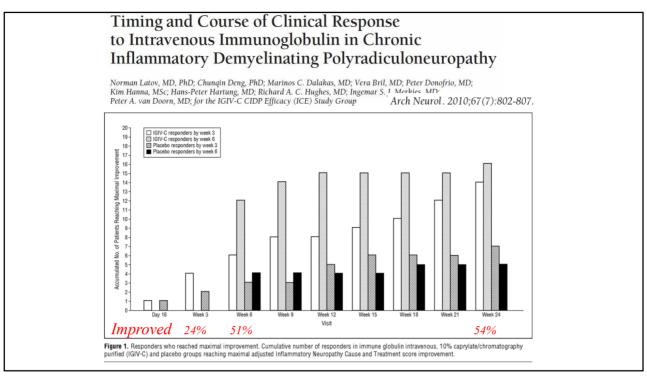


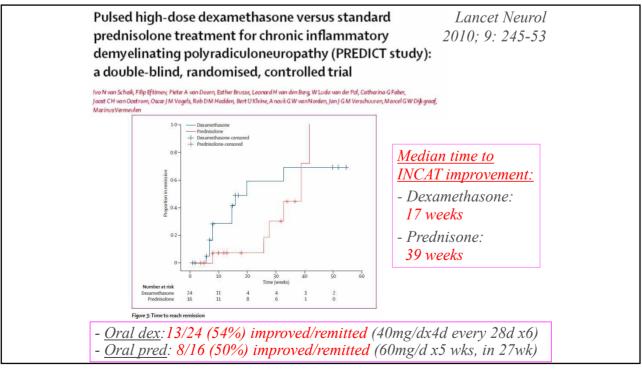




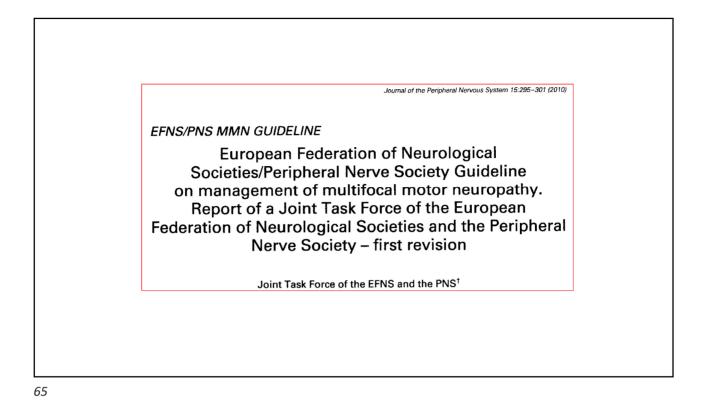
	No.	No. (%)		
Therapy	treated	improved		
Cyclophoshamide i.v.	40	30	(75%)	
"" oral	6	3	(50%)	
Interferon-β1a	15	8	(53%)	
Azathioprine, (alone)	10 (4)	5 (2)	(50%)	
Rituximab	28	17	(61%)	
Eculizumab	13	7	(54%)	
Mycophenolate	1	0		
Cyclosporine	2	2		

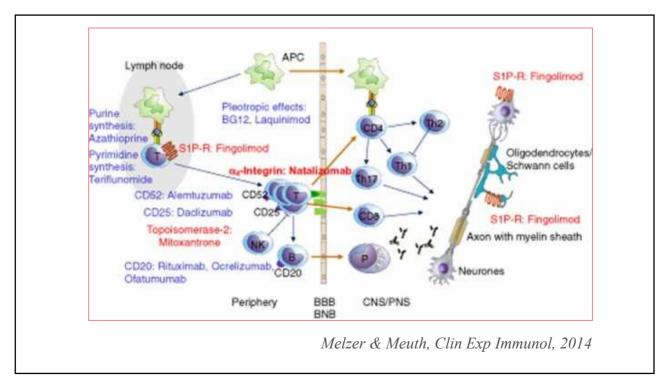


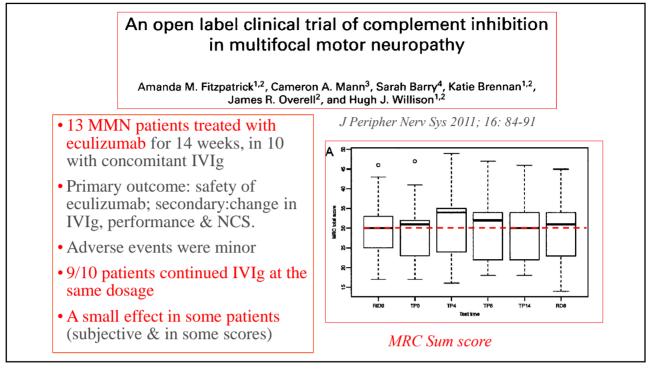


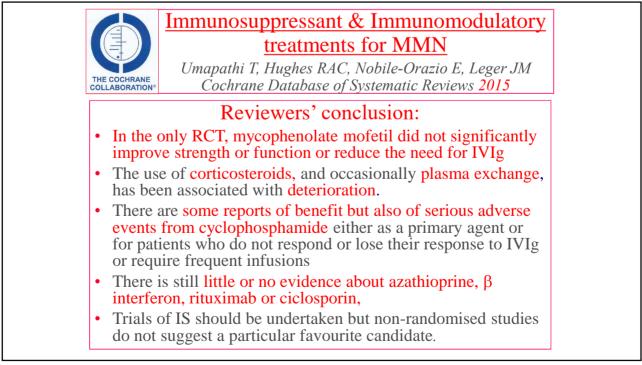


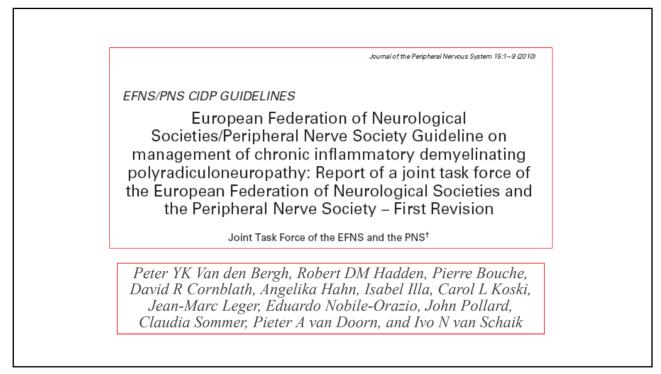
PAPER Axon loss is an important determinant of weakness in multifocal motor neuropathy J T H Van Asseldonk, L H Van den Berg, S Kalmijn, R M Van den Berg-Vos, C H Polman, J H J Wokke, H Franssen J Neurol Neurosura Psychiatry 2006;77:743-747, doi: 10.1136/innp.2005.064816 Table 4 Logistic regression analysis for the determinants of weakness Determinant Univariate p Value Multivariate p Value 5.7 (2.9 to 11.1) Axon loss <0.001 4.4 (2.0 to 9.7) <0.001 Conduction block <0.001 7.1 (2.6 to 19.4) 21 (07 to 66) NS Demyelinative slowing 6.6 (3.1 to 14.0) < 0.001 2.0 (0.8 to 4.8) Years untreated 1.1 (1.1 to 1.2) < 0.001 1.1 (1.0 to 1.2) < 0.01 Years treated 1.0 (0.9 to 1.2) NS 1.1 (0.9 to 1.3) NS < 0.001 < 0.05 2.1 (1.4 to 3.1) Nerve length 19(11 to 32) Table 3 Relation between disease duration and the percentage of nerves with weakness, axon loss, conduction block, and demyelinative slowing Percentage of nerves with* Disease duration No of patients (years) Weakness Axon loss Conduction block Demyelinative slowing 0-5 5-10 24 54 3 4 55 44 27 60 86 65 73 10-14 42 55 15-20 *For each disease duration category, the total number of nerves with abnormalities was assessed and expressed as a percentage of the total number of nerves within that category.

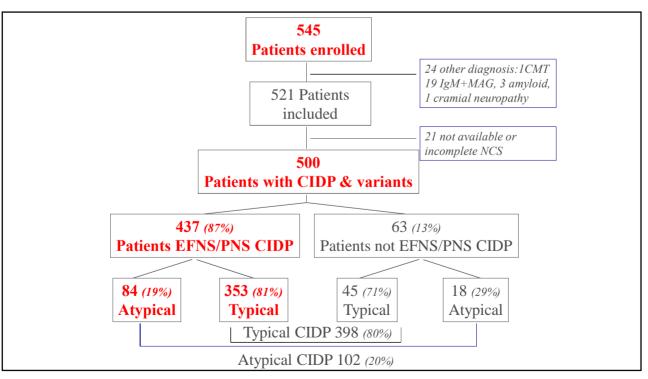

assifications and treatment responses in ronic immune-mediated demyelinating lyneuropathy			Tackenberg et Neurology 200	
	CIDP	DADS	MADSAM	
n	36	19	8	
Full clinical remission, n (%)	4 (11) NS	8 (42) p < 0.02	0 (0) NS	
No Immunosuppressive treatment*, n (%)	4 (11)	4 (57)	2 (25)	
IVIg treated, n	27	13	5	
IVig Improved, n (%)	22 (81)	11 (85)	4 (80)	
Mean Improvement after I Vig. modified Rankin score ± SD	1.31 ± 0.69	1.07 ± 0.70	1.17 ± 0.75	
	-		p<0.05	
Steroid treated, n total; n first line	20;5	6;1	3;1	
Sterold Improved n total; n first line (%)	13; 4 (65)	4;0(67)	3;1(100)	

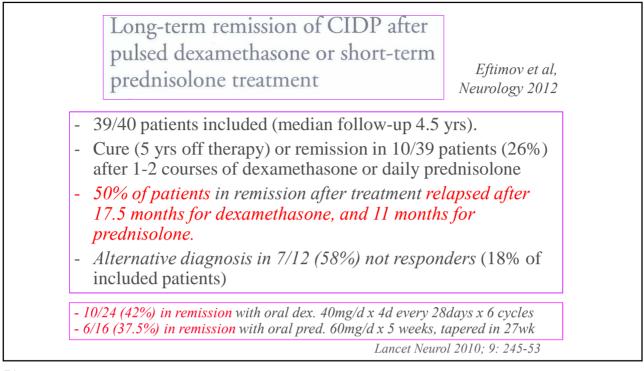


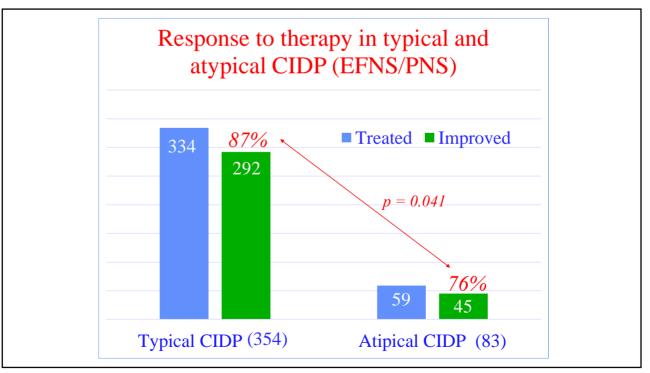


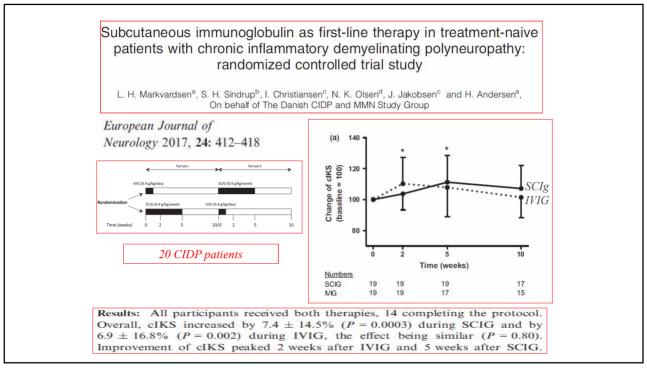

				e/modulatory procedures)
	Treated	Responders	%	% with SE
AZA	77	21	27	21 (13% stop)
RTX	18	4	22	11
CsA	12	3	25	50 (41% stop)
CYP	13	5	38	15 (8% stop)
MTX	12	2	17	8
MFM	12	3	25	17
IFNβ	3	0	0	
IFNα	11	4	36	9
			(Cocito et al, 201

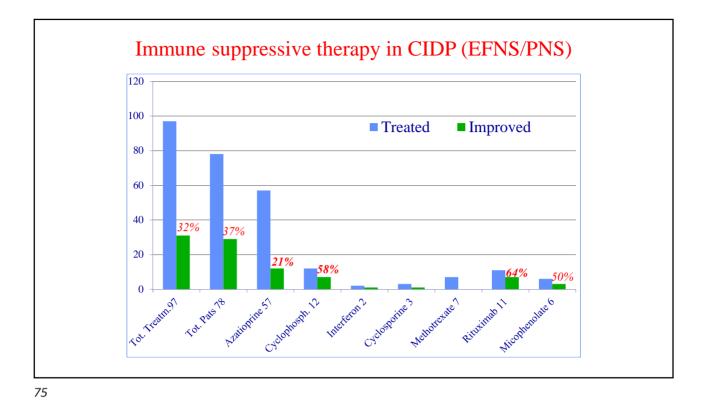

Itlal diagnosis in MMN	
MMN	31 (35)
Motor neuron disease	28 (32)
Mononeuropathy	11 (13)
Polyneuropathy	13 (15)
Radiculopathy	2 (2)
Chronic inflammatory demyelinating neuropathy	1 (1)
Hereditary neuropathy	1 (1)
Minor stroke	1 (1)

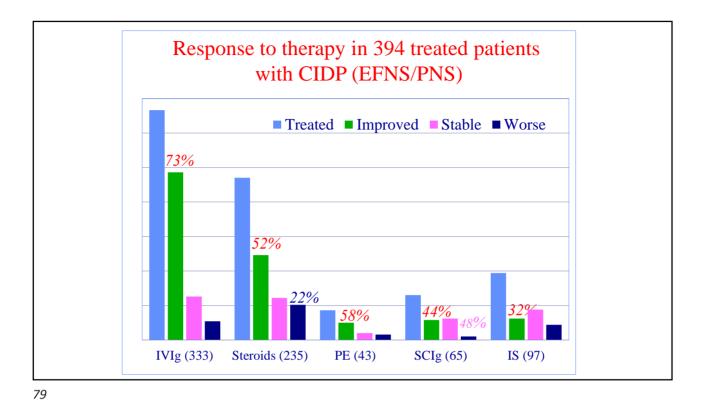


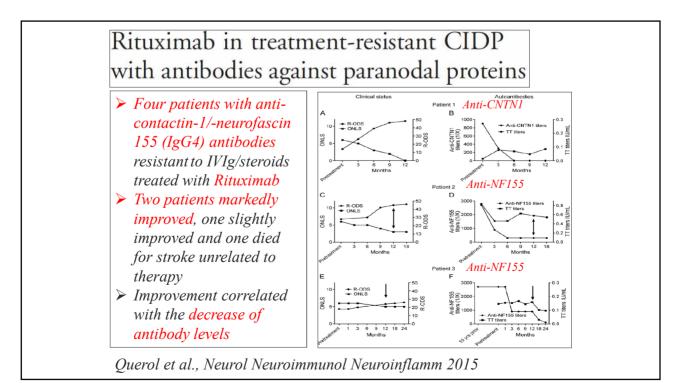




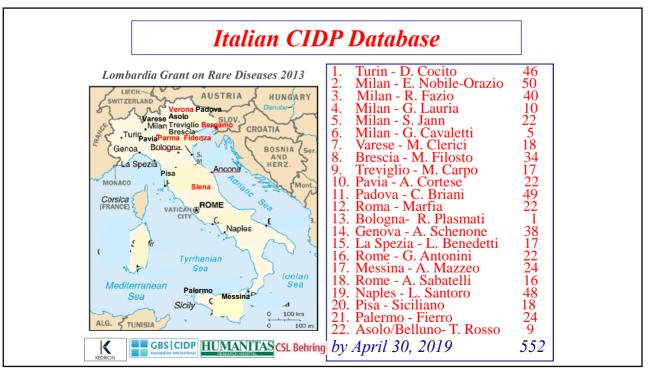




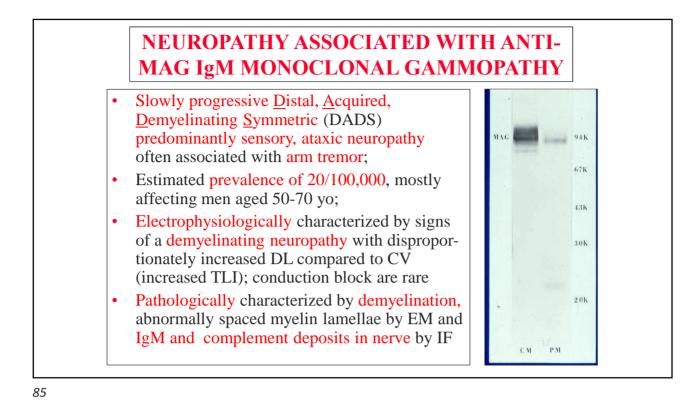

L. H. Markvard:	senª, S. H. Sindru	p ^b , I. Christiansen	rolled trial st	Jakobsen ^c and H. A	
Table 2 Changes of seco (40-MWT), overall disab				a, nine-hole peg test (9-HP	T), 40-m walk test
	Treatment	0	2	5	10
MRC score (points)	SCIG IVIG	$\begin{array}{c} 83.9 \pm 5.1 \\ 84.0 \pm 5.3 \end{array}$	$\begin{array}{c} 84.8 \pm 5.3 \\ 84.8 \pm 5.5 \end{array}$	$\begin{array}{c} 85.7^{*} \pm \ 5.2 \\ 85.7^{\dagger} \pm \ 5.6 \end{array}$	$85.0^* \pm 5.1$ 84.5 ± 5.6
Grip strength (kg)	SCIG IVIG	$\begin{array}{c} 27.0\pm15.9\\ 25.6\pm13.3\end{array}$	27.4 ± 16.3 27.5 ± 15.3	$\begin{array}{c} 28.7 \pm 14.6 \\ 27.3 \pm 15.6 \end{array}$	28.2 ± 13.7 27.7 ± 16.0
9-HPT (s)	SCIG IVIG	$\begin{array}{c} 30.2\pm19.6\\ 36.4\pm45.6\end{array}$	$\begin{array}{c} 28.6 \pm 17.0 \\ 34.6 \pm 38.8 \end{array}$	$\begin{array}{c} 29.0 \pm 21.2 \\ 32.3 \pm 34.8 \end{array}$	$\begin{array}{c} 28.2 \pm 21.0 \\ 32.1 \pm 35.0 \end{array}$
40-MWT (s)	SCIG IVIG	24.0 ± 5.6 24.6 ± 7.3	$\begin{array}{c} 23.3 \pm 5.8 \\ 24.2 \pm 7.9 \end{array}$	$\begin{array}{c} 22.5^{*}\pm 6.2\\ 23.4^{\dagger}\pm 8.2 \end{array}$	$\begin{array}{c} 22.8^{*}\pm7.5\\ 23.4\pm8.2 \end{array}$
ODSS (points)	SCIG IVIG	$3.5 \pm 1.6 \\ 3.5 \pm 1.4$	3.3 ± 1.6 3.1 ± 1.7	$2.8^{*} \pm 1.8$ 2.9 ± 2.0	$\begin{array}{c} 2.9^{*}\pm1.7\\ 3.3\pm1.7\end{array}$
Plasma IgG (g/L)	SCIG IVIG	11.8 ± 2.5 11.9 ± 2.6	$16.7^{*\ddagger} \pm 2.9$ $24.6^{\dagger} \pm 2.8$	$19.5^{*\ddagger} \pm 2.6$ $15.7^{\dagger} \pm 2.9$	$13.5^{*\ddagger} \pm 2.7$ $12.2^{\dagger} \pm 2.8$

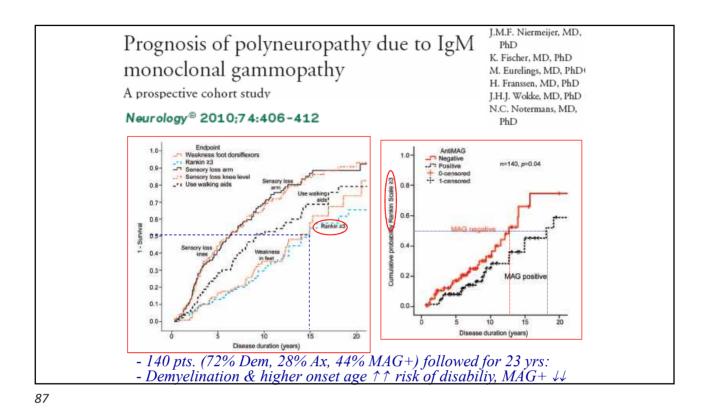


References	Number of patients	Reported frequency of atypical CIDP	Mean disease duration
Maisonobe T et al., 1996	93	56%	NR
Gorson KC et al., 1997	67	37%	28 months (2 months-20 years)
Rotta FT et al., 2000	87	49%	26.3 months (1 week-22 years)
Busby and Donaghy, 2003	102	30%	72 months (12 months-24 years)
Misra UK et al., 2006	37	22%	10 months (3 -27.5 months)
Rajabally YA et al., 2009	46	19.6%	69 months (0–24 years)
Viala K et al., 2010	146	49%	11 months (0.5 - 200 months)
Kuwabara S et al., 2014	100	40%	73.5 months
Mahdi-Rogers et al., 2014	101	17.8%	NR
Lefter S et al., 2017	202	1%	NR

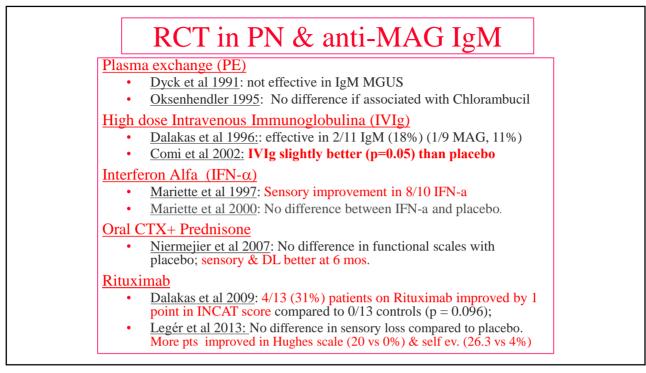

Our diagnostic criteria for CIDP variants
 <u>DADS</u> Symmetric, sensory or predominantly sensory symptoms and signs starting distally in the lower limbs, without proximal limb – trunk - face impairment (<i>length-dependent fashion</i>). <i>A</i>) with or <i>B</i>) without increased distal latency
Pure sensory CIDP
 Sensory symptoms (including ataxia), without weakness, with a polyneuropathic distribution, symmetric or asymmetric. Symptoms may start anywhere in the body excluding a <i>length-dependent pattern (included under DADS)</i> A) with or B) without delayed motor conduction studies
Pure Motor CIDP
 Weakness, without sensory symptoms or signs, with a polyneuropathic distribution, symmetric or asymmetric. Symptoms may start anywhere in the body <i>A</i>) with or <i>B</i>) without delayed sensory conduction studies
Lewis Sumner syndrome
 Sensory symptoms, with or without weakness, with a multineuropathic distribution (<i>unilateral focal CIDP included</i>) Symptoms may start anywhere in the body <i>A</i>) with or <i>B</i>) without motor conduction block
Clinical phenotype must have lasted at least one year (temporal criteria)

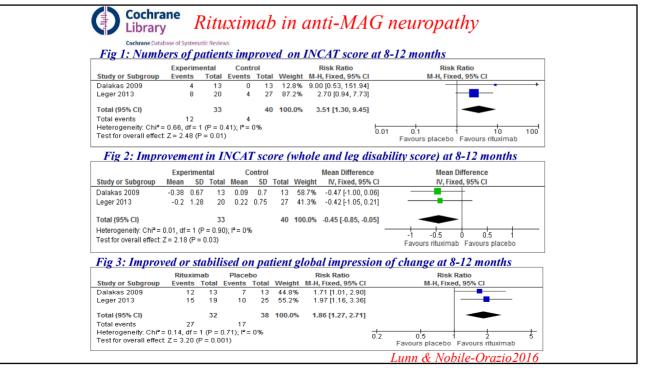
		Seropositiv	re CIDP		Seronegative CIDF
	Neurofascin 155	Contactin1	Caspr ^a	Neurofascin 186	
Age of onset, years	20-30	5060	30	50-60	50-60
Subacute onset	++	++	++++	++++	+
Tremor	++	+	(1)	=	+
Sensory ataxia	+++	++++		++++	+
Severe pain	- COLONIA	1948	++++		Very rare
Central nervous system demyelination	+	2	1012-0	÷	Very rare
Intravenous immunoglobulin unresponsiveness	++++	+++	++++	++	++

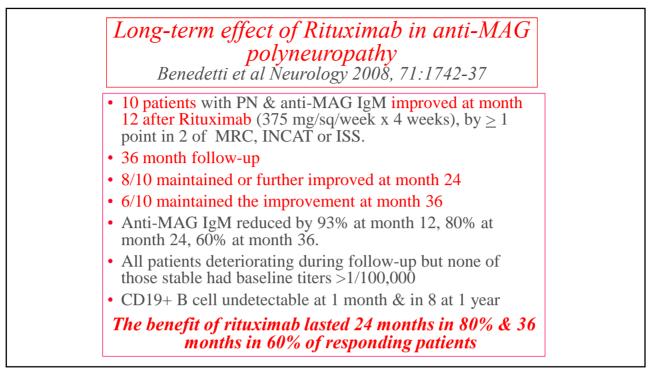

Study	No. of patients	Response to IVIg	Type of study	Dosage	Duration/ follow-up	Response	Improved/ treated
Interferon-β1α							
Martina et al. [72]	3	Unresponsive	pro, ol	6 MIU, 3 times a week, monotherapy	6-12 months	3 improved in walking and manual dexterity, 2 also in disability	3/3
Van den Berg-Vos et al. [73]	9	Responsive	pro, ol	6 MIU, 3 times a week, monotherapy	6 months	6 not improved, 3 improved more than on IVIg	3/9
Radziwill et al. [74]	3	Responsive	pro, ol	12 MIU, 3 times a week, add-on to IVIg	9 months	1 not improved, 2 delayed IVIg by 2 weeks	2/3
Total treated/response Rituximab	15						8/15 (53.3 %)
Pestronk et al. [79]	14	Insufficient	pro, ol, cont	375 mg/m ² , weekly for 4 weeks + maintenance monotherapy	2 years	13 % strength improvement versus 3 % in controls after 1 year, 23 % versus 0 % after 2 years	18/21, 1 year ^a 13/16, 2 years
Rojas-Garcia et al. [80]	1	Declining	cs	375 mg/m ² , weekly for 4 weeks, monotherapy	1 year	No response	0/1
Ruegg et al. [81]	1	Declining	cr	375 mg/m ² , weekly for 4 weeks, yearly for 5 years, add-on to IVIg	5 years	IVIg frequency reduced from every 7 to every 12 days	1/1
Gorson et al. [82]	2	Responsive	pro, ol	375 mg/m ² , weekly for 4 weeks, add-on to IVIg	1 year	IVIg reduced by 43 % and strength improved in 1, IVIg increased by 23 % and strength reduced in 1	1/2
Stielgbauer et al. [83]	3	Declining	pro, ol	375 mg/m ² for 2 weeks then 4–6 infusions over 27–39 months, monotherapy	27-39 months	3 improved by 5-6 points on muscle strength	3/3
Chaudhry et al. [84]	6	Responsive	pro, ol	1 g, repeated after 2 weeks, add- on to IVIg	12 months	No significant change in IVIg dose compared with pre-therapy, 2 patients reduced by 11 %	0/6
Michaud et al. [85]	1	Declining	cr	375 mg/m ² , weekly for 4 weeks, add-on to IVIg	37 months	No change in IVIg, improved strength and disability	1/1
Total treated/response Eculizumab	28						17/28 (60.7 %)
Fitzpatrick et al. [89]	13	10/13 on IVIg	pro, ol	600 mg at weeks 0, 1, 2, 3 then 900 mg every 2 weeks until week 12 add-on to IVIg in 10	14 weeks	9/10 continued on IVIg at the same dose. No significant improvement but 7/13 subjectively improved	7/13 (53.8 %) (only subjective)


Neuropathy in Monoclonal Gammopathy

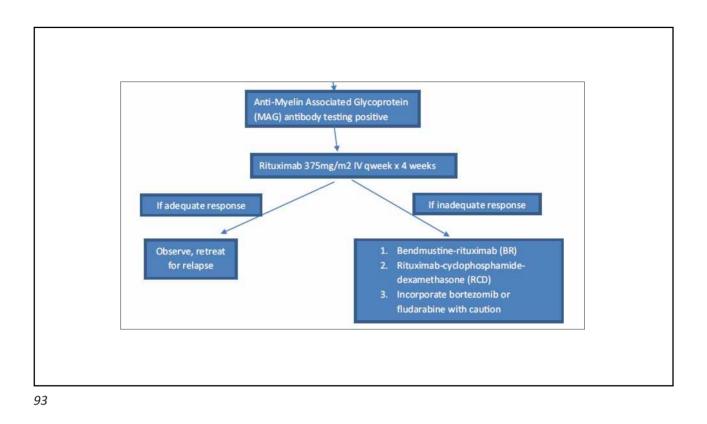
Osteosclerotic Myeloma (I	POEMS) 50-85%						
WM	30-50%						
MGUS	5-37%						
Amyloidosis	10-20%	-					
Cryoglobulinemia	7-15%						
Multiple Myeloma	3-14%						
Lymphoma	2-8%	S	G	K	X	М	A

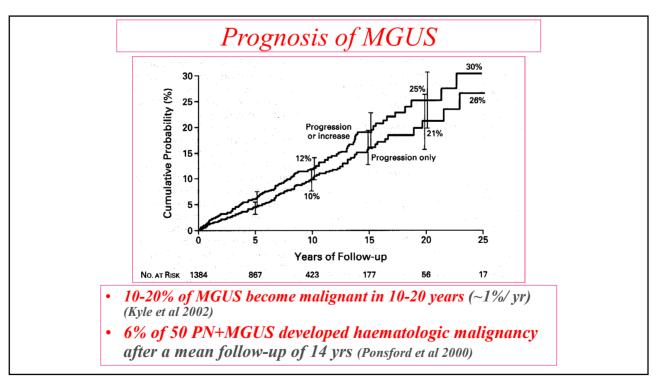

	No. of patients		Subclinical PN	Total PN		
Total MGUS	74	8%	8%	16%		
IgG	34	3%	3%	6%		
IgA	14	7%	7%	14%		
IgM	26	15%	15%	31%		
IgM vs IgG+I	gA: p < 0	.025	Nobile-Orazie	o et al. 199		
	P	N+MG at our	Institute (1984	-2000)		
PN+IgN	1	95 (83%)				
PN+IgC	ť	15	5 (13%)			
PN+IgA	1	4	5 (5%)			




	with a chronic,	slowly progres	sive,
predominantly	$\frac{1}{MAG + (42)}$	yelinating neur MAG - (26)	p p
Type of PN			P
S or S>M	62%	31%	< 0.025
SM	31%	38%	n.s.
M>S	7%	31%	< 0.01
NCS Peroneal			
Mean MCV	22.9 m/s	39.6 m/s	< 0.00000
< 35 m/s	90%	23%	< 0.0001
MGUS/WM-NHL	81%/19%	27%/73%	< 0.0005

Pathogenetic role of anti-MAG IgM Anti-MAG IgM are almost invariably associated with PN or predict its onset Clinical & electrophysiological homogeneous features of the neuropathy; Pathological evidence of demyelination and IgM & complement deposits in nerve; Complement mediated nerve demyelination induced in animals by anti MAG IgM; Improvement correlates with reduction of anti-MAG IgM





Hospital MA et al, Hematologica 2013	Immunotherapy-based reg neuropathy: results in 45	
Table 2. Patients' characteristics.		
Characteristic	Rituximab combination	Rituximab along
N. of patients	19 $8+CTX$	26
Median age, y (range)	(42-85) 7 + Fluda 4 + CTX & Fluda	67 (47-86)
Gender: male/female	12/7	14/12
Lymphoplasmacytic cell bone marrow infiltration, n. (%) 8 (42%)	10 (38%)
Spike IgM level, g/dL (range)	0.38 (0-1.8)	0.35 (0-1.52)
Anti-MAG titer, BTU (range)	60000 (1000->70000)	61000 (5800->70000)
Clinical presentation Pain Ataxia Motor deficit Sensory deficit	14 (7396) 18 (996) 11 (5896) 19 (10096)	22 (84%) 17 (65%) 14 (54%) 25 (96%)
Modified Rankin Score before treatment	3:7 patients (37%) 4:12 patients (63%)	2: 8 patients (30%) 3:13 (50%) 4:5 (20%)
Modified Rankin Score after treatment	1:5 patients (26%) 2:10 patients (53%) 3:3 patients (11%) 4:1 patients (5%)	1:10 patients (39%) 2:11 patients (42%) 3:5 patients (19%)
Previous treatment, n. (%) Rituximab Chlorambucil IgIV	7 (36%) 2 (10%) 4 (21%) 1 (5%)	20 (77%) 0 20 (77%) 0
<i>Iedian time to improvement</i>	5 mos	9.5 mos p=

