

5th Congress of the European Academy of Neurology Oslo, Norway, June 29 - July 2, 2019

Teaching Course 10

Clinical science in muscle disorders (Level 2)

Rigid Spine syndrome

Sabrina Sacconi Nice, France

Email: sacconi.s@chu-nice.fr

TEACHING COURSE 10:

« Clinical Science in Muscle Disorders » (Level 2)

« RIGID SPINE SYNDROME »

Pr Sabrina Sacconi, MD, PhD

Neuromuscular Diseases Reference Center HCP ERN NMD, Nice University Hospital, Nice, France

Disclosures

Professor Sabrina Sacconi has

- served as a speaker for BioMarin, Sanofi/Genzyme, LFB, Biogen, Alnylam, Fulcrum
- received research/scientific grants from BioMarin, Sanofi/Genzyme, LFB, Grifols, Santhera, Biogen

Contractures

- Stiffness or constriction in connective tissues of the body
- Muscle, joints (tendons, capsule) and skin
- They limit normal full range of motion of joints
- Most common cause: inactivity (scars and burn for skin), ageing
- Very common finding in NMD, (but also CNS* and OA** or RA***)
- In NMD, they are related to the extent and localization of muscular weakness and atrophy
- When they appear early in life, they may be associated with skeletal abnormalities (arthrogriposis, kyphosis, scoliosis pes cavus, pectus carinatum..)

*Central Nervous System; **OsteoArthritis, ***Rhumatoid Arthritis

Joint contractures

Rigid spine syndrome

B. Eymard et al., Revue Neurologique 169 (2013), 546-563

Rigid spine syndrome

Rigid Spine-Syndrom A. Wettstein, H. R. Hirth, R. Ca. Jurget, P. Jerosalem and B. Steinmann

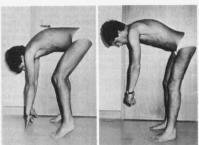
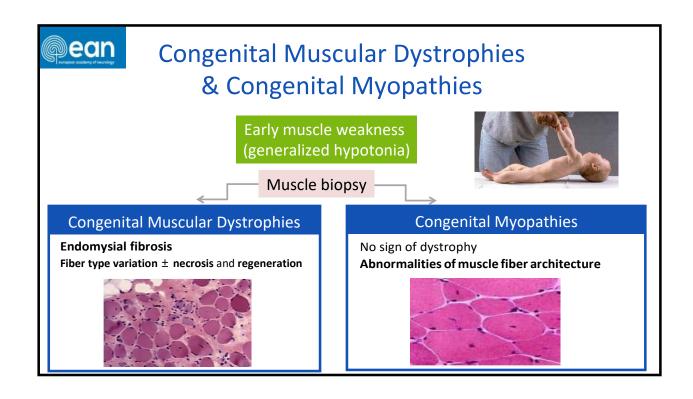
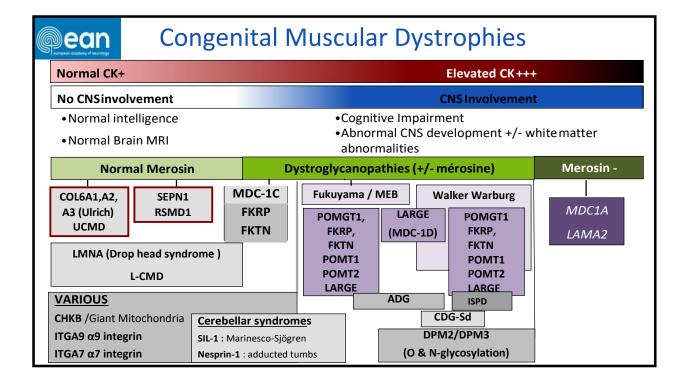


Abb. 1. Von links nach rechts die Fälle 1, 2 und 3 beim Versuch zur maximalen Anteroflexion des Rumpfes und des Nackens. Bemerkenswert neben der Streckkontrak-tur der LWS und HWS ist die Achillessehnenverkürzung mit Spitzfußkontraktur bei Fall 1

- 1. Dubowitz V (1973) Rigid spine syndrome: a muscle syndrome in search


- Dubowitz V (1973) Rigid spine syndrome: a muscle syndrome in search of a name. Proc roy Soc Med 66:219-220
 Goebel HH, Lenard HG, Görke W, Kunze K (1977) Fibre type disproportion in the rigid spine syndrome. Neuropädiatrie 8:467-477
 Goto I, Nagasaka S, Nagara H, Kuroiwa Y (1979) Rigid spine syndrome. J Neurol Neurosurg Psychiatry 42:276-279
 Rowland LP, Fetell M, Olarte M, Hays A, Singh N, Wanat FE (1979) Emery-Dreifuss muscular dystrophy. Ann Neurol 5:111-117
 Seay AR, Ziter FA, Petajan JH (1977) Rigid spine syndrome, a type I fiber myonathy. Arch Neurol 34:119-122 fiber myopathy. Arch Neurol 34:119-122


« Limitation of the flexion of cervical and dorso-lumbar spine caused by the shortening of the erector trunci muscles, without severe paresis »

Rigid spine and myopathies

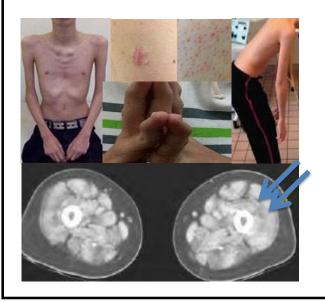
- **Congenital Muscular Dystrophies**
- **Congenital Myopathies**
- **Emery Dreyfuss Muscular Dystrophies**
- Myofibrillar Myopathies
- Glycogenosis

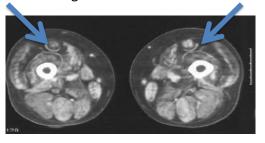
CMD, Ullrich type (COL6A1, COL6A2, COL6A3, AR) CMD

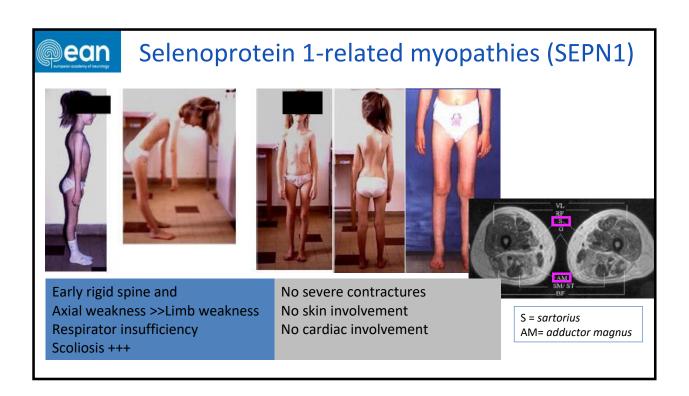
Scleroatonic Muscular Dystrophy

- Neonatal onset, severe progression
- · Congenital hip luxation
- Torticollis
- Delayed motor milestones
- Distal hyperlaxity
- Proximal contractures (hip, rigid spine)
 >Distal contractures (fingers, wrist, elbow)
- Proximal muscle weakness followed by distal
- Skin: keloid scars, follicular hyperkeratosis
- protuberant calcaneus
- Pied bot, clubfoot
- Respiratory insufficiency +++
- Scoliosis

CMD Ullrich Type (COL6A1, COL6A2, COL6A3, AR)


Clinical variability: related to the age at onset

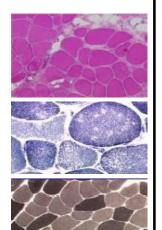

Courtesy of T. Stojkovic

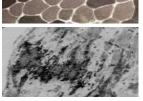

ean suddeny of neurology

CMD, Bethlem type (COL6A1, COL6A2, COL6A3, AD)

Age at onset: 1st and second decade Skin abnormalities
No contractures except fingers
Proximal > distal deficiency
They don't loose the ability to walk
Respiratory insufficiency
Worsening at their 40ies

Selenoprotein-related Myopathies (SEPN1)

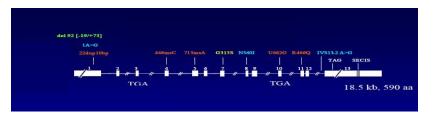



Congenital Muscular dystrophy associeted to rigid spine syndrome (RSMD1)

Multi-minicores Congenital myopathy (MmD)

Fiber Type disproportion congenital dystrophy (FTCD)

Mallory Body Desmin-related myopathy (MB-DRM)



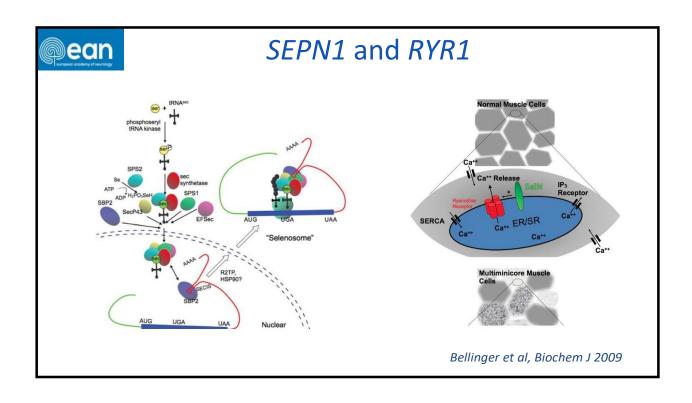
Seleprotein related myopathies (SEPN1, 1p36)

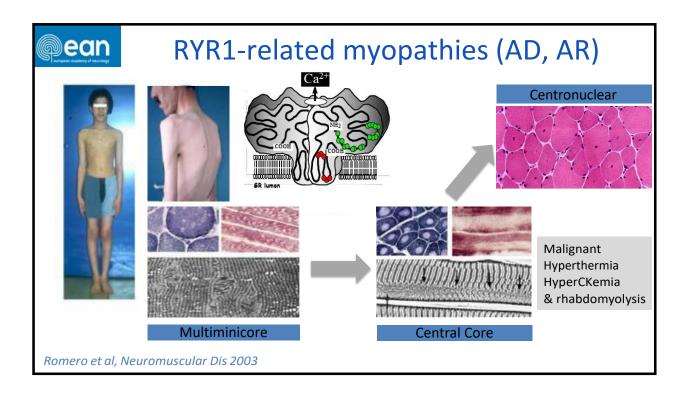
Genotype-Phenotype correlation

Rigid Spine Muscular dystrophy (RSMD1)

Moghadaszadeh et al, 2000

Multi-minicores Congenital myopathy

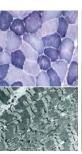

Ferrero et al, 2002


Mallory Body desmin related myopathy

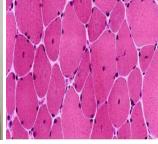
Ferrero et al, 2004

Fiber type disproportion congenital dystrophy

Clarke et al 2006



RYR1-related myopathies (AUT DOM, AUT REC)

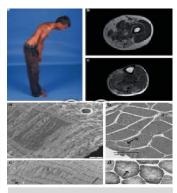


Variability in age at onset, disease progression, symptoms, histopathological findings.

Rigid spine and paraspinal muscle involvement in 10 to 15% of patients.

Malignant hyperthermia, ptosis and ophtalmoplegia may be associated

ean


Other congenital myopathies with rigid spine

DNMN2, Centronuclear, AD Sacconi et al, Eur J of Hum Gen 2009

BIN1, centronuclear, AD Cabrera-Serrano et al, Neurology 2018

ACTA1, AR Nemaline myopathy, O'Grady et al, Eur J Hum Gen, 2015

Emery-Dreyfuss Muscular Dystrophy

Prevalence: 1:400.000

- 1) Joint contractures of the Achilles, elbow and posterior neck tendons;
- **2)** Slowly progressive muscle weakness and atrophy (initially and generally with a humeroperoneal or scapuloperoneal distribution but later becoming more diffuse).
- **3) Cardiac involvement:** conduction defects, rhythm disturbances and dilated cardiomyopathy. They may lead to sudden death.

Emery AE. Emery-Dreifuss syndrome. J Med Genet 1989

ean ecology

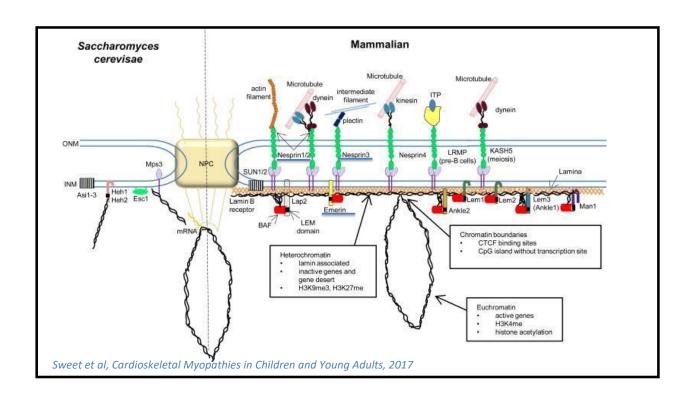
LINCT

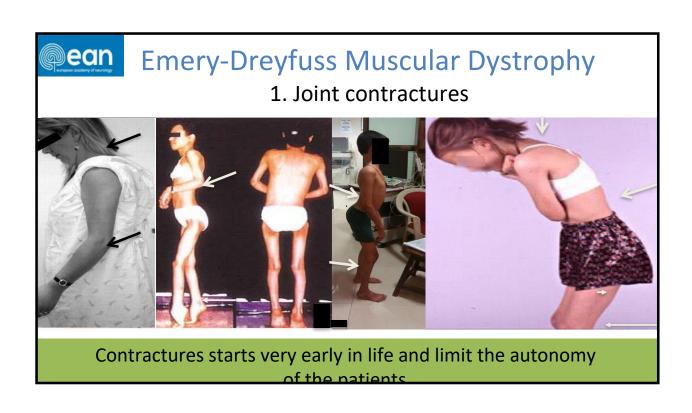
Emery-Dreyfuss Muscular Dystrophy

EDMD1: STA/Emerine; Xq28; Recessive (UMD-EMD Database)

EDMD2: LMNA/Lamine A/C; 1q21.2; Dominant

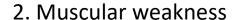
EDMD3: LMNA/Lamine A/C; 1q21.2; Recessive


EDMD4: SYNE1/Nesprine1; 6q25; Dominant


EDMD5: SYNE2/Nesprine2; 14q23; Dominant

Non EDMD6: FHL1; Xq26.3; Semi-Dominant

LINC EDMD7: TMEM43; 3p25; Dominant


45% of the patients: causative gene remains to be identified

Emery-Dreyfuss Muscular Dystrophy

HUMERAL weakness:

Predominant in the higher part of biceps and triceps with relative sparing of deltoid in early stages of the disease.

SCAPULAR weakness:

Simmetric scapular winging

PERONEAL weakness:

Antero-medial compartement (Laminopathies AD, AR), posterior compartment +/- calf pseudohypertrophy (Emerinopathie liée à X)

Emery-Dreyfuss Muscular Dystrophy

3. Cardiac Involvement

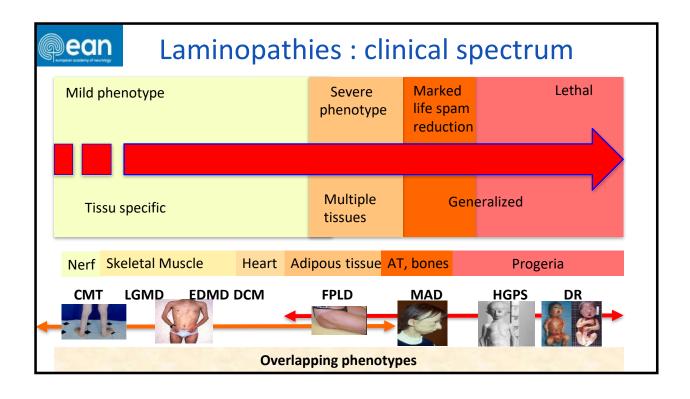
Dilated>Hypertrophic cardiomyopathy with reduction of systolic function.

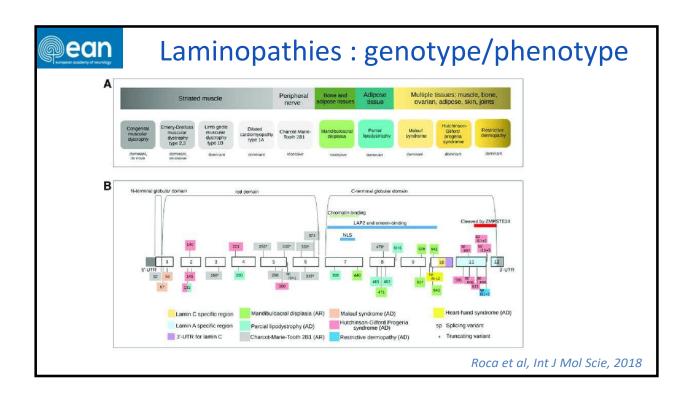
A-V conduction bloc: sinus bradycardia, I, II, III degree AVB

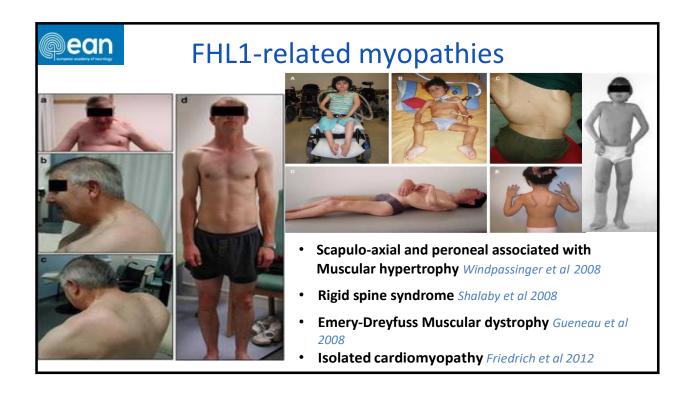
Rhythm disturbances:

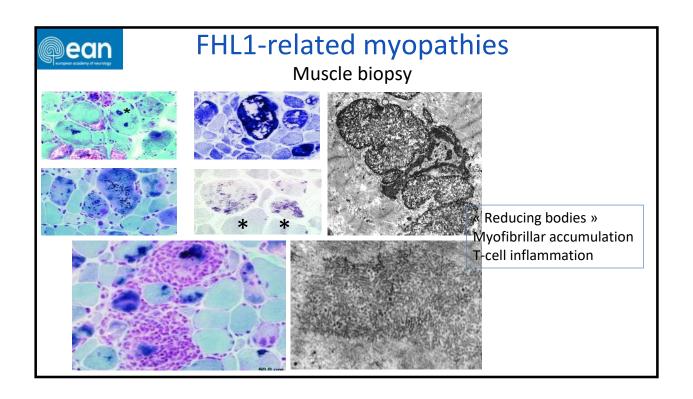
Atrial: AES, fibrillation or flutter

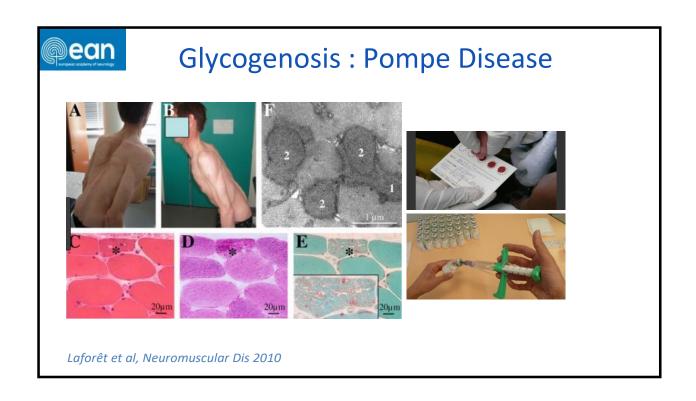
Ventricular: VESV, ventricular tachycardia


Less frequently:


Right ventricular Cardiopathy


Left ventricular aneurism


Reduced Left ventricular compaction


ean society of tearrifys	Emery-Dreyfuss Muscular Dystrophy Emerinopathies vs Laminopathies	
	EMERINOPATHIES (X ^{rec})	LAMINOPATHIES (AD, AR)
CONTRACTURES	Frequently the first sign	Later in disease course
MUSCULAR WEAKNESS	Humeroperoneal predominant un antero-lateral compartment LGMD phenotype rare Wheelchair-bunded very rare	Humero-peroneal but also scapulo-peroneal Early calf involvement some patients associated with hypertrophy LGMD Phentype more frequent More severe
CARDIAC INVOLVEMENT	++ All cardiac involvement are possible	+++++ Cardiac involvement may be the only symptom
RESPIRATORY INVOLVEMENT	Rare	Rare, but can be present in the most severe cases

.... other genes associated with rigid spine TPN03 TTN, AR CAPN3, AR In success collected with spine class designed in Section of Section (Section Collected) (Sec

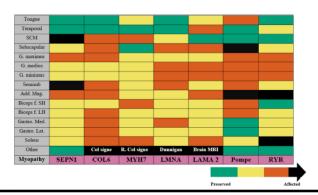
.... other genes associated with rigid spine

Cullup et al, Neuromusuclar disorder, 2012

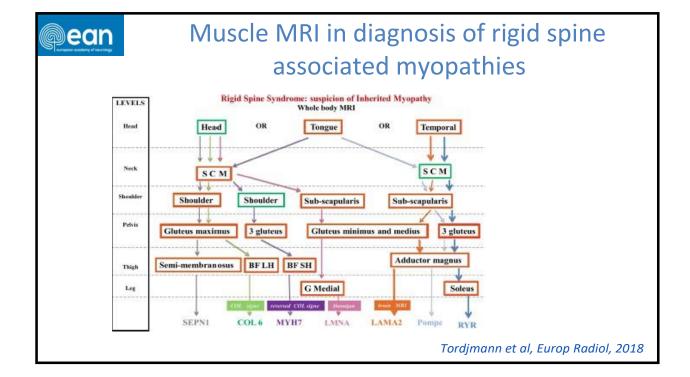
Neuromuscul Disord. 2016 Oct;26(10):681-687. doi: 10.1016/j.nmd.2016.07.005. Epub 2016 Jul 25.

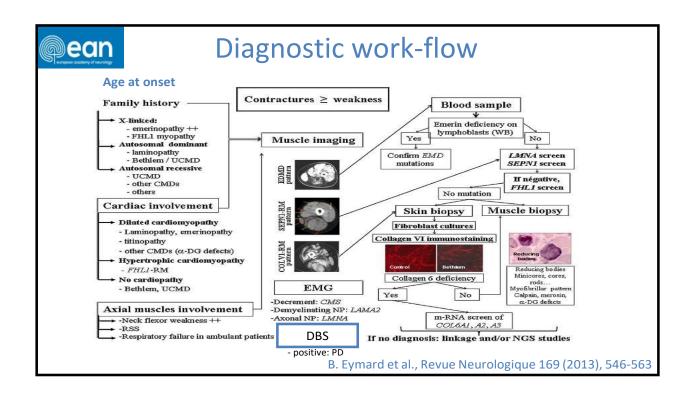
A novel neuromuscular form of glycogen storage disease type IV with arthrogryposis, spinal stiffness and rare polyglucosan bodies in muscle.

 $\underline{\mathsf{Malfatti}} \ \underline{\mathsf{E}^1}, \underline{\mathsf{Barnerias}} \ \underline{\mathsf{C}^2}, \underline{\mathsf{Hedberg\text{-}Oldfors}} \ \underline{\mathsf{C}^3}, \underline{\mathsf{Gitiaux}} \ \underline{\mathsf{C}^4}, \underline{\mathsf{Benezit}} \ \underline{\mathsf{A}^2}, \underline{\mathsf{Oldfors}} \ \underline{\mathsf{A}^3}, \underline{\mathsf{Carlier}} \ \underline{\mathsf{RY}^5}, \underline{\mathsf{Quijano\text{-}Roy}} \ \underline{\mathsf{S}^6}, \underline{\mathsf{Romero}} \ \underline{\mathsf{NB}^7}$



Noury et al, Muscle and Nerve, 2017


Muscle MRI in diagnosis of rigid spine associated myopathies


76 patients with genetically confirmed inherited myopathy were included. They were affected by Pompe disease or harbored mutations in RYR1, collagen VI, *LMNA*, *SEPN1*, *LAMA2* and *MYH7* genes.

Novel decision algorithm based on muscle fat replacement graded on mWB-MRI: 94.3% accuracy

Tordimann et al, Europ Radiol, 2018

