

5th Congress of the European Academy of Neurology

Oslo, Norway, June 29 - July 2, 2019

Teaching Course 12

EAN/MDS-ES: Hyperkinetic movement disorders (Level 2)

What's new in paediatric movement disorders

Miryam Carecchio Milan, Italy

Email: mcarecchio@gmail.com

TC 12 - EAN/MDS-ES: Hyperkinetic movement disorders (Level 2) July 1st, 2019

What's new in paediatric movement disorders?

Miryam Carecchio, MD, PhD

Assistant Professor of Neurology

Department of Neuroscience University of Padua, Italy

Nothing to disclose

Hyperkinetic MD without epilepsy Novel genes (2012-2019)

Gene	Gene product	Main mov. disorder Chorea/dyskinesias	
ADCY5 PDE10A PDE2A (?)	Adenylate cyclase 5 Phosphodiesterase 10A Phosphodiesterase 2A		
KMT2B	Lysine-specific histone methyltransferase 2B		
HPCA	Hippocalcin	Dvstonia	
GNAL	Guanine nucleotide-binding protein, α_{olf} subunit	-)	
ANO3	Anoctamin-3		
KCTD17	Potassium channel tetramerization domain-containing protein 17	Myoclonus-dystonia	

PDE10A

De Novo Mutations in *PDE10A* Cause Childhood-Onset Chorea with Bilateral Striatal Lesions

Niccolò E. Mencacci,^{1,2,17} Erik-Jan Kamsteeg,^{3,17} Kosuke Nakashima,^{4,17} Lea R'Bibo,¹ David S. Lynch,¹ Bettina Balint,^{5,6} Michèl A.A.P. Willemsen,⁷ Matthew E. Adams,⁸ Sarah Wiethoff,^{1,9} Kazunori Suzuki,⁴ Ceri H. Davies,⁴ Joanne Ng,^{10,11} Esther Meyer,¹⁰ Liana Veneziano,¹² Paola Giunti,¹ Deborah Hughes,¹ E. Lucy Raymond,¹³ Miryam Carecchio,^{14,15} Giovanna Zorzi,¹⁴ Nardo Nardocci,¹⁴ Chiara Barzaghi,¹⁵ Barbara Garavaglia,¹⁵ Vincenzo Salpietro,¹ John Hardy,^{1,16} Alan M. Pittman,^{1,1,6} Henry Houlden,¹ Manju A. Kurian,^{10,11} Haruhide Kimura,^{4,18} Lisenka E.L.M. Vissers,^{3,18} Nicholas W. Wood,^{1,18,*}

The American Journal of Human Genetics 98, 763–771, April 7, 2016

"...we used whole-exome sequencing to unravel the underlying genetic cause in three unrelated individuals with a very similar and unique clinical presentation of **childhood-onset chorea** and characteristic brain MRI showing symmetrical **bilateral striatal lesions**. All individuals were identified to carry **a de novo heterozygous mutation in PDE10A** (c.898T>C [p.Phe300Leu] in two individuals and c.1000T>C [p.Phe334Leu] in one individual), encoding a phosphodiesterase highly and selectively present in MSNs".

PDE10A				
Dominant <i>de novo</i> mutations (Mencacci <i>et al.,</i> AJHG 2016)	Biallelic mutations (Diggle et al., 2016; Knopp et al., 2019)			
 ✓ Early onset (5-10 yrs) generalized chorea ✓ Non-progressive course ✓ Normally achieved motor milestones and intelligence ✓ T2 striatal hyperintensity ✓ 2 missense mutations in 3 unrelated subjects 	 ✓ Generalized chorea presenting in the first months, with axial hypotonia ✓ Delayed motor and language milestones ✓ Normal brain MRI ✓ 10 subjects from 3 consanguineous families ✓ Response to Levodopa in 3 cases 			

Additional clinical features

- Microcephaly
- Short stature with somatic harmonic development: 64%
- Mild intellectual disability low range of intelligence: 70%
- Minor facial dysmorphisms: 64% → bulbous nasal tips, low-set ears, thin upper lip, mild palpebral ptosis, broad nasal bridge, elongated face
- Brisk reflexes in the lower limbs: 43%
- Psychiatric disturbances
- Developmental delay
- Cutis aplasia
- Epilepsy

Meyer et al., 2017; Zech et al., 2016; Carecchio et al., 2019

What's new in pediatric movement disorders and epilepsy?

(~-	pilepuc-dyskinetic encept	aiopatnies»)
Gene	Gene product	Movement disorder
FOXG1 GNAO1	Forkhead Box G1 Gαo subunit of GPCR	
GRIN1 FRRS1L GPR88 ARX STXBP1 UNC13A CACNA1E ATP6V1A PCHD12	GluN1 subunit of NMDAR Ferric Chelate Reductase 1-like G protein-coupled receptor 88 Aristaless-related homeobox protein Syntaxin-binding protein 1 Unc-13 homolog A α_1 subunit of Ca _V 2.3 channel A subunit of v-ATPase Protocadherin-12	Chorea/ Dyskinesias// Dystonia/ Status dystonicus
 ATP1A3	Na+/K+ ATPase, α3 subunit	Dystonia/parkinsonism/ataxi

GNAO1			
Phenotypic spectrum of <i>GNAO1</i> variants: epileptic encephalopathy to involuntary movements with severe developmental delay 2016			
Hirotomo Saitsu ^{*,1} , Ryoko Fukai ^{1,2} , Bruria Ben-Zeev ^{3,4} , Yasunari Saka ⁵ , Masakazu Mimak ⁶ , Nobuhiko Okamoto ⁷ , Yasuhiro Suzuki ⁸ , Yukifumi Monden ⁹ , Hiroshi Saito ⁹ , Barak Tziperman ³ , Michiko Torio ⁵ , Satoshi Akamine ⁵ , ¹⁰ , Yoshinori Tsurusaki ¹ , With Developmental Delay and a Movement Disorder Leonie A. Manke MD. PhD ¹ , Marc Engelen, MD. PhD ²			
Expanding Phenotype of De Novo Mutations in 2017 GNAO1: Four New Cases and Review of Literature			
David C. Schorling ¹ Tobias Dietel ² Christina Evers ³ Katrin Hinderhofer ³ Rudolf Korinthenberg ¹ Daniel Ezzo ⁴ Carsten G. Bönnemann ⁴ Janbernd Kirschner ¹			
Movement disorder in <i>GNAO1</i> encephalopathy associated with gain-of-function mutations 2017			

<section-header><image><image><image><image><image><image>

