

Sociedad Española de Neurología

Fundada en 1949

Neuro-COVID – Short & long term

David García Azorín MD, PhD, MSci

Headache Unit. Hospital Clínico Universitario de Valladolid, Spain Africa Task-Force, European Academy of Neurology Chair, Secondary Headache Special Interest Group, International Headache Society Secretary, Neurology Section, European Union of Medical Specialists Chair, International Area, Spanish Society of Neurology Board

UniversidaddeValladolid

Acute neuro-COVID

ACE2 receptor

Neurological manifestations are **frequent**

- >50% of patients¹
- Variable frequency^{2, 3}
- Commonest^{2, 3}:
 - Anosmia
 - Headache
 - Myalgia

• Altered mental status

Romero-Sánchez CM. Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology. 2020 Aug 25;95(8):e1060-e1070.

D V, Sharma A. Neurological Manifestations in COVID-19 Patients: A Meta-Analysis. ACS Chem Neurosci. 2021 Aug 4;12(15):2776-2797

	Number of studies (N)	Summary estimate (%)	95% CI
Smell disturbances	17	35.8	(21.4, 50.2)
Taste disturbances	14	38.5	(24.0, 53.0)
Headache	54	14.7	(10.4, 18.9)
Myalgia	38	19.3	(15.1, 23.6)
Disturbances in consciousness/altered mental status	9	9.6	(4.9, 14.3)
Dizziness	12	6.1	(3.1, 9.2)
Acute cerebrovascular disease	8	2.3	(1.0, 3.6)
Ischaemic stroke	7	2.1	(0.9, 3.3)
Hemorrhagic stroke	7	0.4	(0.2, 0.6)
Cerebral venous thrombosis	2	0.3	(0.1, 0.6)
Syncope	3	1.8	(0.9, 4.6)
Ataxia	2	0.3	(0.1, 0.7)
Seizure	5	0.9	(0.5, 1.3)

event	studies (N)	summary estimate (%)	95% CI
Malaise	12	38.3	[24.7, 52.9]
Fatigue	147	33.6	[29.5, 37.8]
Gustatory dysfunction	74	27.2	[22.3, 32.3]
Olfactory dysfunction	89	26.4	[21.8, 31.3]
Encephalopathy	12	23.5	[14.3, 34.1]
Myalgia	154	21.4	[18.8, 24.1]
Arthralgia	34	19.9	[15.3, 25.0]
Altered mental status	30	17.1	[12.3, 22.5]
Sleep disorder	5	14.9	[1.9, 36.8]
Headache	176	14.6	[12.2, 17.2]
Confusion	13	14.2	[6.9, 23.5]
Cerebrovascular disease	28	9.9	[6.8, 13.4]
Nausea	100	9.8	[8.1, 11.7]
Guillain—Barre syndrome	7	6.9	[2.3, 13.7]
Vomiting	104	6.7	[5.5, 8.0]
Dizziness	50	6.7	[4.7, 9.1]
Movement disorders	9	5.2	[1.7, 10.4]
Seizure	24	4.05	[2.5, 5.8]
Neuralgia	7	2.4	[0.8, 4.7]
Encephalitis	8	0.6	[0.2, 1.3]

Neurological manifestations present in combination²

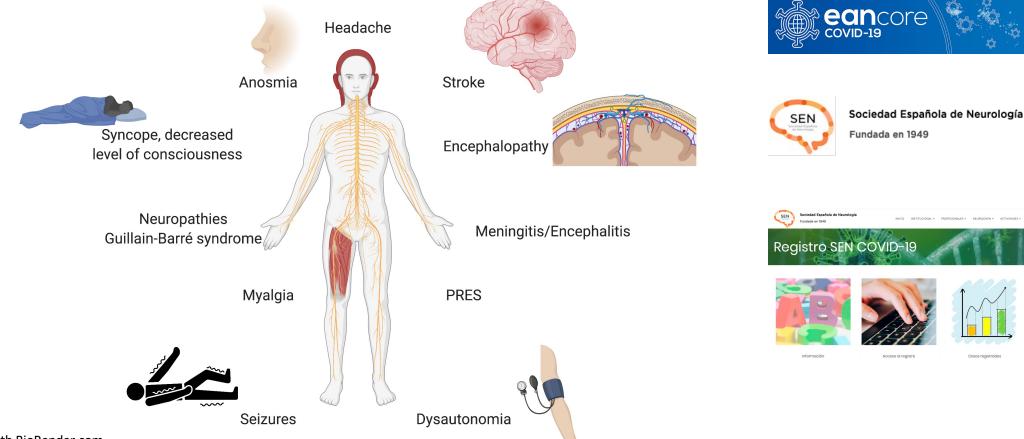
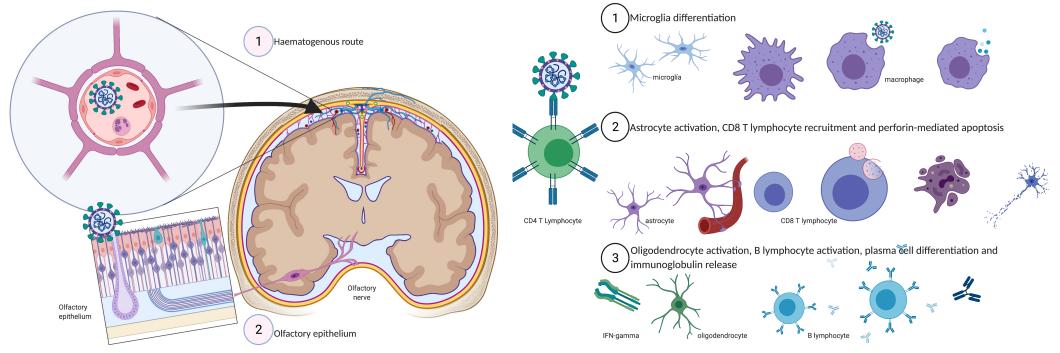


Figure created by David García-Azorín with BioRender.com

- 1. Chou SH, GCS-NeuroCOVID Consortium and ENERGY Consortium. Global Incidence of Neurological Manifestations Among Patients Hospitalized With COVID-19-A Report for the GCS-NeuroCOVID Consortium and the ENERGY Consortium. JAMA Netw Open. 2021 May 3;4(5):e2112131.
- 2. García-Azorín D; Spanish neuroCOVID registry group. Neurological presentations of COVID-19: Findings from the Spanish Society of Neurology neuroCOVID-19 registry. J Neurol Sci. 2021 Apr 15;423:117283.
- 3. García-Azorín D. Neurological symptoms in Covid-19 patients in the emergency department. Brain Behav. 2021 Apr;11(4):e02058.

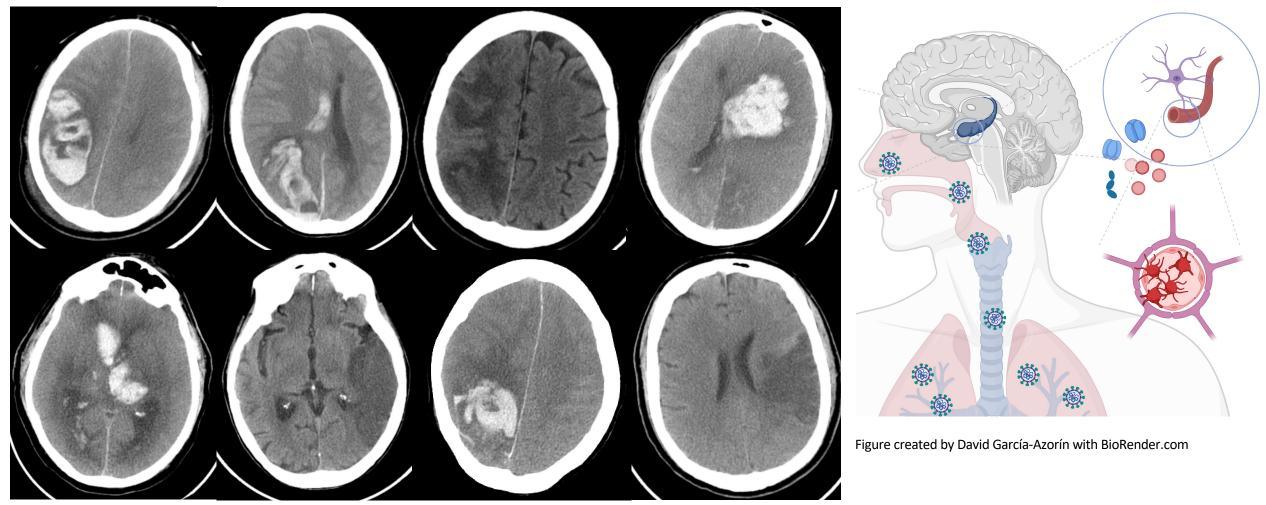
What is neuro-COVID pathophysiology?


ls neuro-COVID caused by neuro-

invasion?

Talavera. Neurology Perspectives 2020

Neurological manifestations can be caused by the virus, the immune response or by organ dysfunction¹⁻³

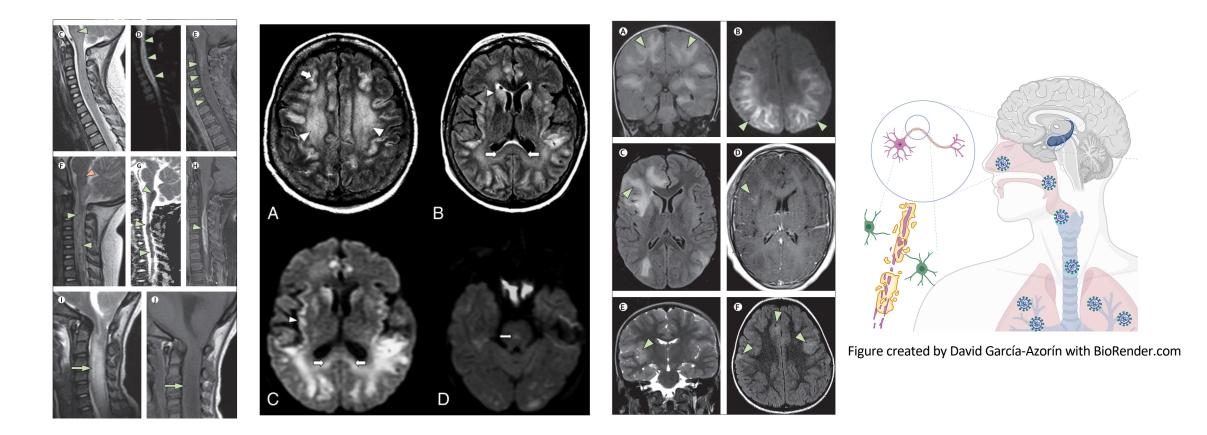

Figures created by David García-Azorín with BioRender.com

1. Finsterer J. Putative mechanisms explaining neuro-COVID. J Neuroimmunol. 2020 Dec 2;350:577453.

2. Newcombe VFJ; Cambridge NeuroCovid Imaging Collaborators. Neuroanatomical substrates of generalized brain dysfunction in COVID-19. Intensive Care Med. 2021 Jan;47(1):116-118.

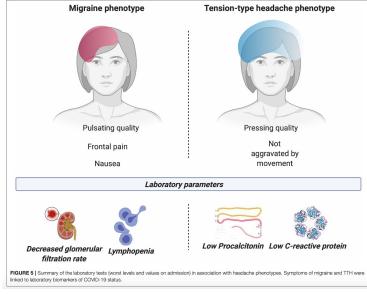
3. Guerrero JI. Central and peripheral nervous system involvement by COVID-19: a systematic review of the pathophysiology, clinical manifestations, neuropathology, neuroimaging, electrophysiology, and cerebrospinal fluid findings. BMC Infect Dis. 2021 Jun 2;21(1):515.

• Caused by a prothrombotic state Stroke, intracranial hemorrhage.

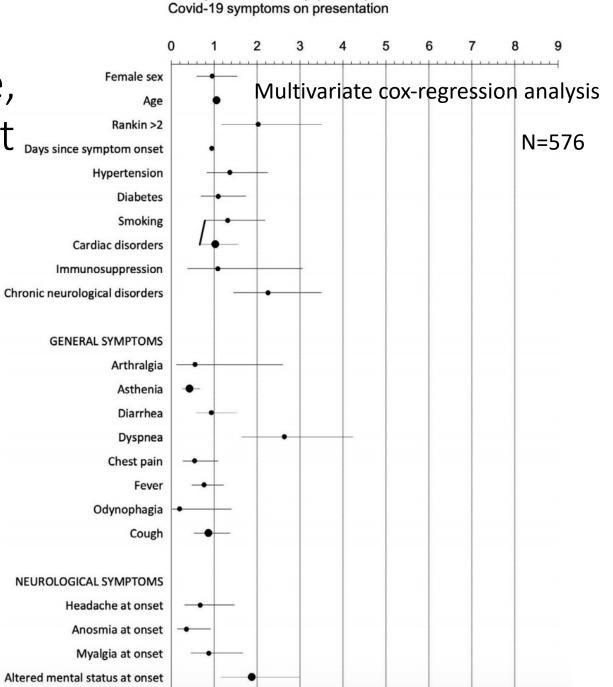


 Associated with multiple organ failure Encephalopathy, seizures

Pathology	Systemic cause	Investigations
Organ failure	Hypercapnia/hypoxia	Pulse oximetry, blood gas
	Hepatic failure	ALT, AST, GGT, ALP, ammonia
	Acute kidney injury	Creatinine, urea
	Thyroid disorders	TSH, T4
	Cardiac failure	ECG, Echo, clinical examination
Metabolic	Hyper/hiponatremia	Plasma Na+
	Hyper/Hypocalcemia	Corrected plasma ++
	Hyper/hypoglycemia	Plasma / finger-prick glucose
	Hyperpyrexia/fever/hypothermia	Tempreature/observations
	Cytokine release syndrome	IL-1, IL-6, TNF-alpha
Тохіс	Sedatives, corticosteroids, hydroxychloroquine, lopinavir, ritonavir, tocilizumab, drugs, alcohol	Patient history, treatment review
Septic	Superinfection	Blood, urine, sputum cultures, serology
Vascular	Hypertensive encephalopathy/Severe hypotension	Blood pressure monitoring
Nutritional	Wernicke encephalopathy	Thiamine replacement, B12


Benedict M. Diagnosis s and management of adult patients with COVID-19 encephalopathy; consensus guidance from the Global COVID-19 Neuro Research Coalition. J Neuropsychiatry Clin Neurosci 2022.

• Immune-mediated manifestations Guillain-Barré sd., myelitis, encephalitis

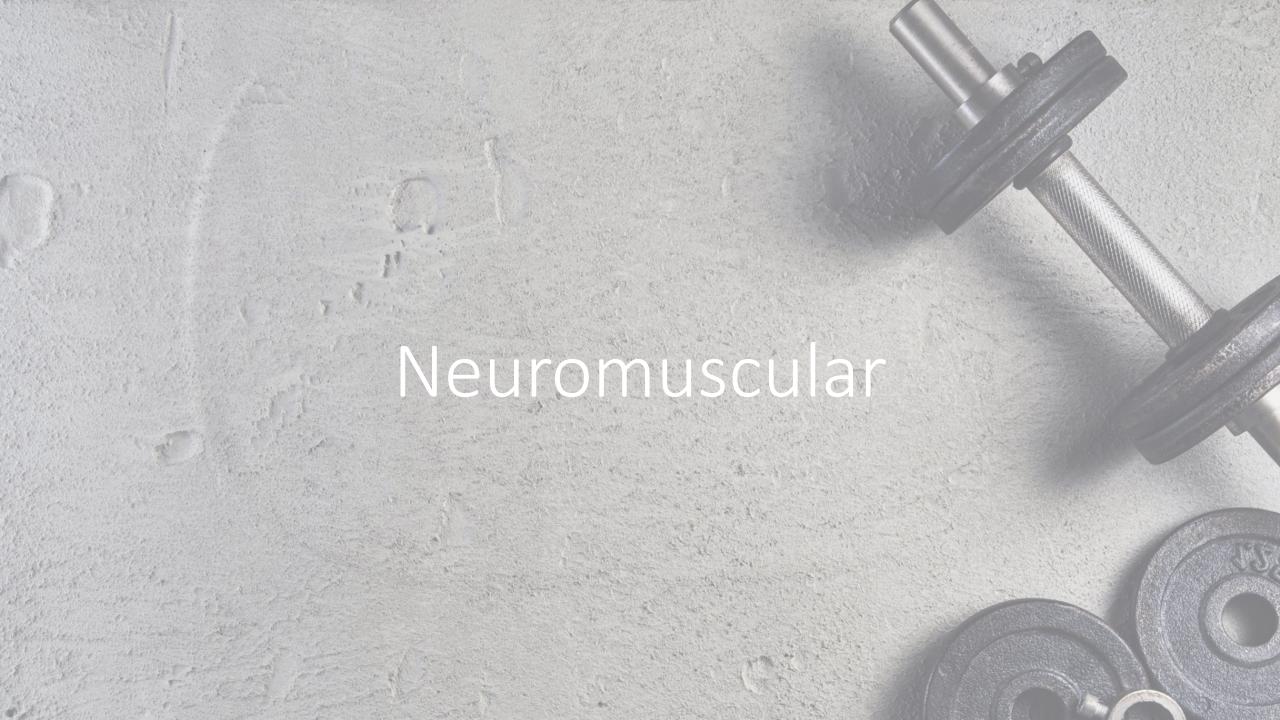

Lindan CE; ASPNR PECOBIG Collaborator Group. Neuroimaging manifestations in children with SARS-CoV-2 infection: a multinational, multicentre collaborative study. Lancet Child Adolesc Health. 2021 Mar;5(3):167-177. Kihira S. Imaging Features of Acute Encephalopathy in Patients with COVID-19: A Case Series. AJNR Am J Neuroradiol. 2020 Oct;41(10):1804-1808. Some manifestations (headache, anosmia) reflect a more efficient Cays since symptom onset immune response Diabetes

- Lower **adjusted** mortality¹
- Related with the phenotype²

1. García-Azorín D. Neurological symptoms in Covid-19 patients in the emergency department. Brain Behav. 2021 Apr;11(4):e02058.

2. Planchuelo-Gómez Á. Deep Phenotyping of Headache in Hospitalized COVID-19 Patients *via* Principal Component Analysis. Front Neurol. 2020 Dec 17;11:583870.

Adjusted mortality (Cl 95%)


Some specific manifestations


COGNITIVE SYMPTOMS

NEUROMUSCULAR

HEADACHE

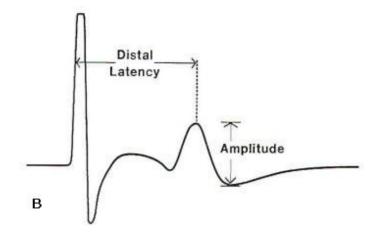
Neuromuscular manifestations

Mandal. Thorax 2021; Scherlinger. Infect Dis Ther 2021. Tabacof. medRxiv 2021.

Neuromuscular manifestations

- 40-60% of patients
- 38% during post-COVID

Neuropathic pain


- 15-50% of patients
- Unspecific distribution
- Fluctuating course

Postural Orthostatic Tachicardia syndrome (POTS)

- Orthostatic headache, syncope, hyperhydrosis, postural tachicardia, flushing.
- 59% of patients report symptoms
- 41% abnormal evaluation
- Also reported after other infections

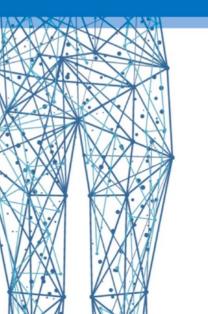
Anaya. Autoimmun Rev 2021, McWilliam. bMJ Case Rep 2021. Bureau. Cureus 2021. Queuler. Neurology 2021; Thieben. Mayo Clin Proc 2007

Neuromuscular manifestations

- Not always a consistent relationship between COVID-19severity and neuromuscular manifestations frequency/severity
- Frequently with no correlate in:
 - Laboratory (CPK)
 - Electromyography-electroneurography
 - Histology

Silva. Perspectives Neurol 2021; Hosey. Nat Rev Dis Prim 2020. Ballvé. Rev Neurol 2021.

Cognitive symptoms



A clinical case definition of post COVID-19 condition by a Delphi consensus

6 October 2021

Post COVID-19 condition

- Post COVID-19 condition occurs in individuals with a history of probable or confirmed SARS CoV-2 infection,
 - usually 3 months from the onset of COVID-19 with symptoms and
 - that last for at least 2 months and
 - cannot be explained by an alternative diagnosis.
- Common symptoms include fatigue, shortness of breath, cognitive dysfunction but also others and
 - generally have an *impact on everyday functioning*.
 - Symptoms may be new onset following initial recovery from an acute COVID-19 episode or persist from the initial illness.
 - Symptoms may also fluctuate or relapse over time.

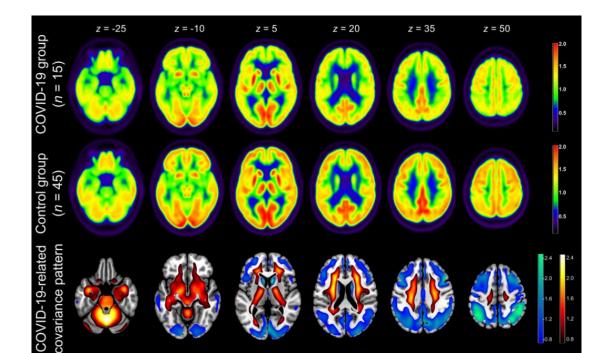
Post-COVID-19 patients performed worse than controls

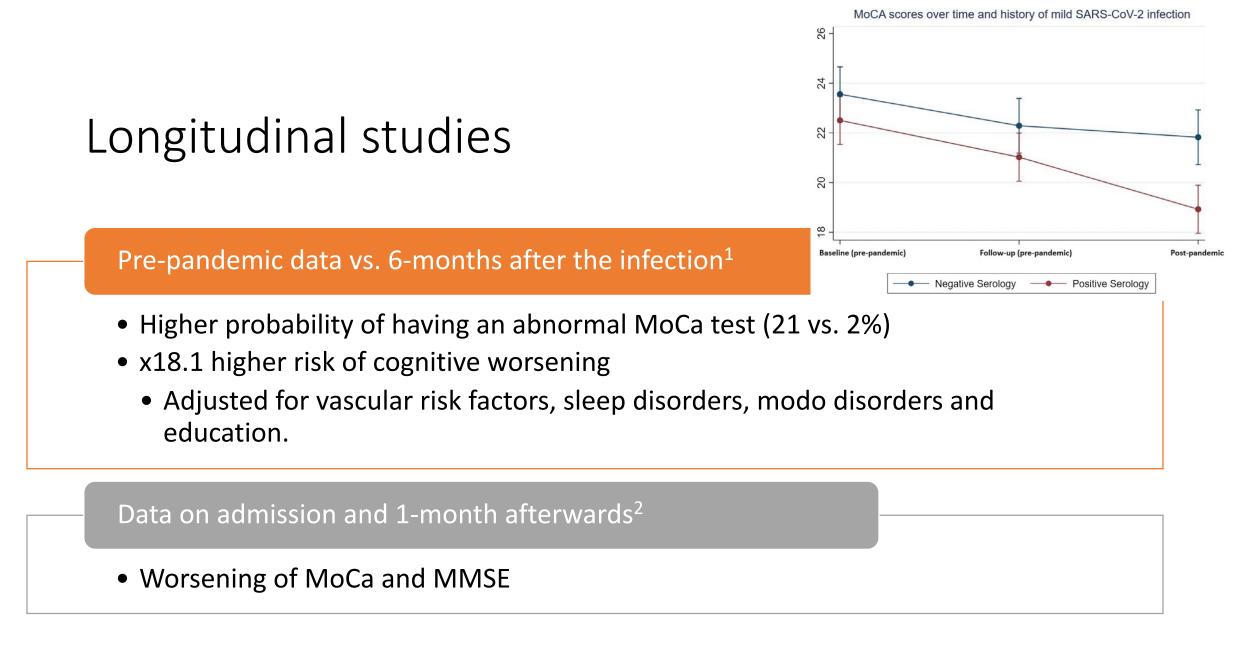
Case-control studies

Atention, memory y executive function

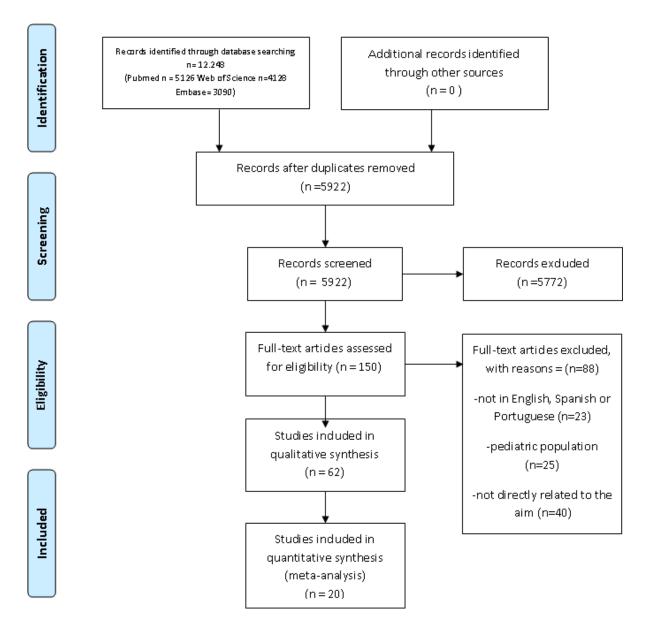
Ortelli. Neurol Sci 2021; Triana. Revista Cubana Hem, Inm, Hemoter 2020; Zhou. J Psychiatr Res 2020

Cohort studies

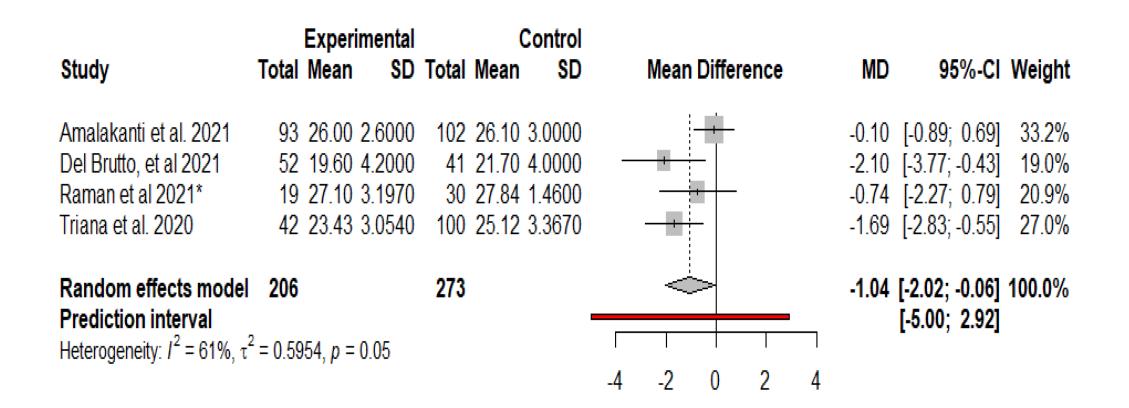

Ermis. Neurol Res Pract 2021; Hosp. Brain 2021; Mendez. J Intern Med 2021; Miskowiak. Ugeskr Laeger 2020.


Prevalence of cognitive complains: 50-65%

• Atention, memory, semantic fluency, executive function.


Findings in imaging

- No structural abnormalities
- Changes regarding grey matter volumen, white matter and brain metabolism



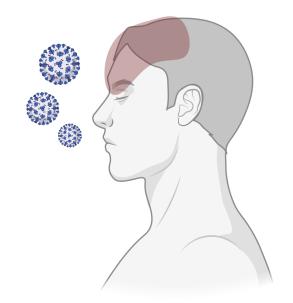
- 1. Del Brutto Eur J Neurol 2021;
- 2. 2. Alemanno. PlosOne 2021;

Crivelli. Alzheimers & Dementia. 2022

Meta-analysis of studies reporting MoCA

Crivelli. Alzheimers & Dementia. 2022

NOMBRE: Nivel de MONTREAL COGNITIVE ASSESSMENT (MOCA) Fecha de nacimiento: (EVALUACIÓN COGNITIVA MONTREAL) estudios: FECHA: Sexo: VISUOESPACIAL / EJECUTIVA Dibujar un reloj (Once y diez) Puntos Copiar el cubo (3 puntos) E Final (5) B (2) 1 Comienzo O (4) 3 C [] [] [] [] [] Contorno Números Agujas **IDENTIFICACIÓN** [] [] MEMORIA Lea la lista de palabras, el ROSTRO SEDA IGLESIA CLAVEL ROJO paciente debe repetirlas. Sin Haga dos intentos. 1er intento puntos Recuérdeselas 5 minutos 2º intento más tarde. ATENCIÓN Lea la serie de números (1 número/seg.) El paciente debe repetirla. [] 2 1 8 5 4 El paciente debe repetirla a la inversa. [] 7 4 2 Lea la serie de letras. El paciente debe dar un golpecito con la mano cada vez que se diga la letra A. No se asignan puntos si > 2 errores. [] FBACMNAAJKLBAFAKDEAAAJAMOFAAB Restar de 7 en 7 empezando desde 100. [] 93 [] 86 [] 79 [] 72 []65 4 o 5 sustracciones correctas: 3 puntos, 2 o 3 correctas: 2 puntos, 1 correcta: 1 punto, 0 correctas: 0 puntos. LENGUAJE Repetir: El gato se esconde bajo el sofá cuando los perros entran en la sala. [] Espero que el le entregue el mensaje una vez que ella se lo pida.[] 12 Ruidez del lenguaje. Decir el mayor número posible de palabras que comiencen por la letra "P" en 1 min. (N > 11 palabras) ABSTRACCIÓN Similitud entre p. ej. manzana-naranja = fruta [] reloj-regla tren-bicicleta RECUERDO DIFERIDO Debe acordarse de las palabras ROSTRO SEDA IGLESIA CLAVEL Puntos por ROJO SIN PISTAS recuerdos [] [] [] [] SIN PISTAS Pista de categoría únicamente Optativo Pista elección múltiple] Día del mes [Día de la semana ORIENTACIÓN Mes [] Año Lugar [] Localidad © Z. Nasreddine MD Versión 07 noviembre 2004 Normal > 26 / 30 TOTAL /30 www.mocatest.org Añadir 1 punto si tiene < 12 años de estudios


MoCA test

Headache is frequent in infections

- One of the commonest symptoms
 - Malaria, dengue, influenza
- Most people have experienced it
- Limited literature

Headache in influenza

- Up to 32-91% of cases¹⁻⁴
- Caused by cytokine release⁵
- May occur also after oseltamivir⁶
 - RR: 1.18 (95% CI: 1.05-1.33)

Symptom	Patients With Laboratory-Confirmed Influenza, % (n = 2470)	Patients Who Tested Negative for Influenza, % (n = 1274)	
Fever (≥37.8°C)*	68	40	
Feverishness*	90	89	
Cough	93	80	
Nasal congestion	91	81	
Weakness	94	94	
Loss of appetite	92	86	
Sore throat	84	84	
Headache	91	89	
Myalgia	94	94	

* Fever was a body temperature of 37°C or higher, whereas feverishness was the patient's subjective feeling that they had a fever or chill.

- 1. Pedersen. J Emerg Med 2019
- 2. Eccles. Pain Med 2003
- 3. Monto. Arch Intern Med 2001
- 4. Eccles. Lancet Infect Dis 2005
- 5. Smith. *Med Hypotheses* 1992
- 6. Jefferson. Cochrane Database Syst Rev 2014

Dengue

 Sometimes becomes persistent (NDPH (0.67%)

Variables	No. studies	Meta-analysis, pooled			
	meta-analyzed	data (95% CI)*	MUCOCUTANEOUS		
CONSTITUTIONAL			Rash	83	
Fever	88	98.1 (97.2–98.7)	Pruritus	5	
Chills	14	65.3 (58.3-71.6)	Exanthema	5	
Myalgia	65	64.2 (58.1-69.8)	Itching eruption	6	
Arthralgia	53	53.6 (46.0-61.0)	CARDIORESPIRATORY		
Lethargy	5	67.1 (32.6-89.6)	Cough	29	
Malaise	9	76.0 (64.1-84.9)	Pleural effusion	23	
Asthenia	6	74.3 (45.8–90.8)	Myocarditis	5	
Body-ache	13	67.2 (55.2-77.3)	Hypotension	14	
Back pain	9	57.3 (32.2–79.1)	Respiratory disorders	13	
Sore throat	12	19.7 (13.4–28.1)	NEUROLOGICAL		
Eye pain	6	27.8 (13.7–48.1)	Headache	83	
Retro-orbital pain	38	35.1 (27.0-44.2)	Dizziness	9	
Lymphadenopathy	13	9.2 (4.4–18.2)	Seizure	7	
GASTROINTESTINAL	10	0.2 (111 10.2)	Shock	12	
Vomiting	36	39.8 (35.0-44.9)	Convulsion	5	
Nausea	22	42.0 (34.0-50.4)	Encephalopathy	8	
Diarrhea	36	20.7 (17.3–24.7)	HEMORRHAGIC MANIFESTATIONS		
Anorexia	17	47.8 (34.9-61.0)	Gingivorrhagia	16	
Ascites	25	10.2 (5.3–18.8)	Epistaxis	25	
Icterus/Jaundice	13	2.8 (1.5-5.2)	Hematuria	16	
Abdominal pain	61	32.4 (27.9–37.2)	Melena	13	
Hepatomegaly	41	18.9 (12.7–27.1)	Petechiae	30	
			Hematemesis	18	
Splenomegaly	20	7.7 (5.2–11.3)	Bleeding/Hemorrhagic manifestations	58	
Hepatosplenomegaly	5	17.5 (8.3–33.3)			

29.6 (26.1–33.3) 24.1 (19.8–29.0) 33.7 (11.2–67.1) 24.0 (18.7–30.2)

22.9 (17.8–28.8) 8.3 (4.5–14.9)

5.7 (1.2-22.5)

12.5 (7.7–19.7) 8.7 (5.3–13.9)

75.7 (69.5-81.0)

22.8 (11.7–39.7) 2.7 (1.8–3.9)** 9.5 (4.2–20.0) 6.1 (2.9–12.5) 5.0 (1.9–12.4)

9.7 (6.0–15.2) 11.8 (7.6–17.9) 5.0 (3.0–8.1) 16.9 (8.1–31.8) 22.3 (16.5–29.3) 13.4 (8.0–21.6) 25.8 (21.0–31.1)

1. Guo. Front Cell Infect Microbiol 2017

2. Volpe de Abreu. *Headache* 2020

Malaria

- P. Falciparum
- Up to 10% mortality, 30% sequelae
 - Children, immunosuppression, pregnancy
- Clinical presentation (appart from headache):
 - Fever (not consistent)
 - Altered level of consciousness
 - No meningeal irritation syndrome
 - Seizures
 - Altered mental status
 - Anemia
- 1. Wiwanitkit. Acta Neurol Taiwan 2009
- 2. Albrecht-Schgoer. Front Immunol 2022

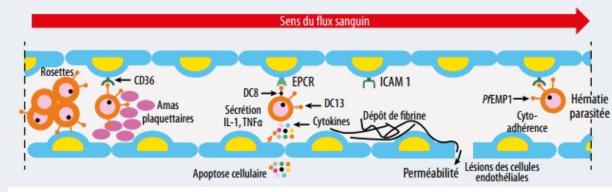
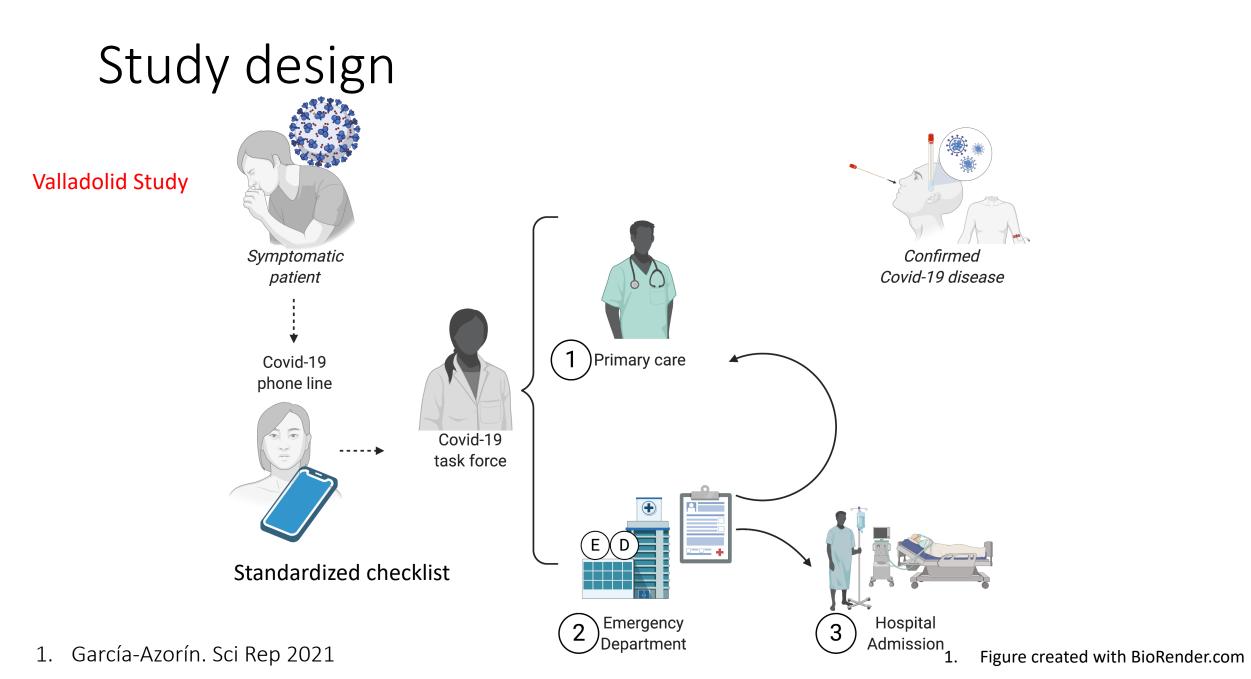


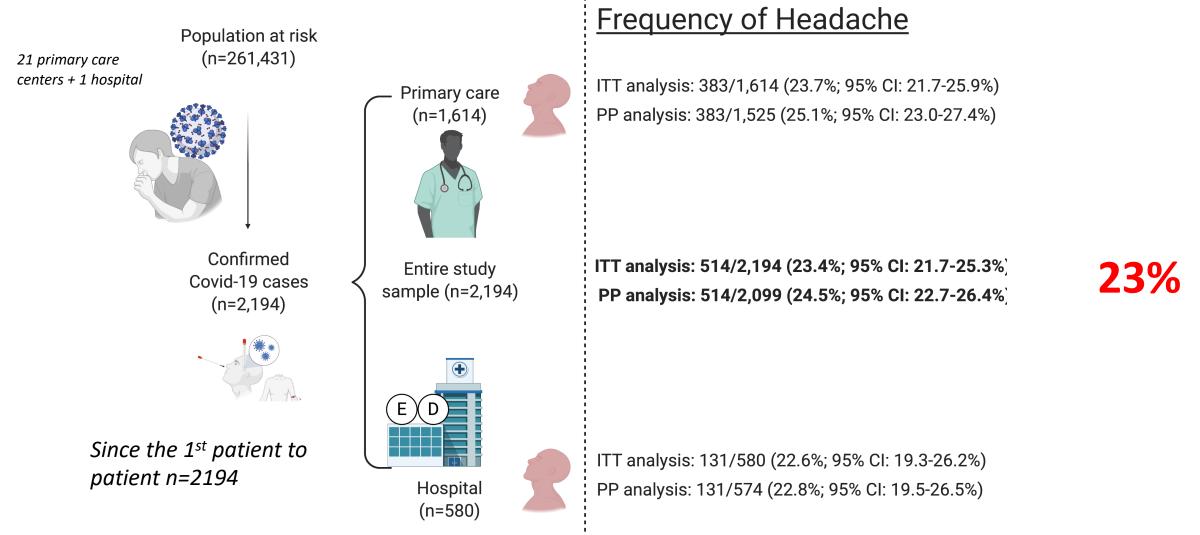
Figure 1. Résumé des principaux mécanismes du neuropaludisme.

La Lettre du Neurologue • Vol. XXI - nº 6 - juin 2017

How frequent is

COVID-related headache?

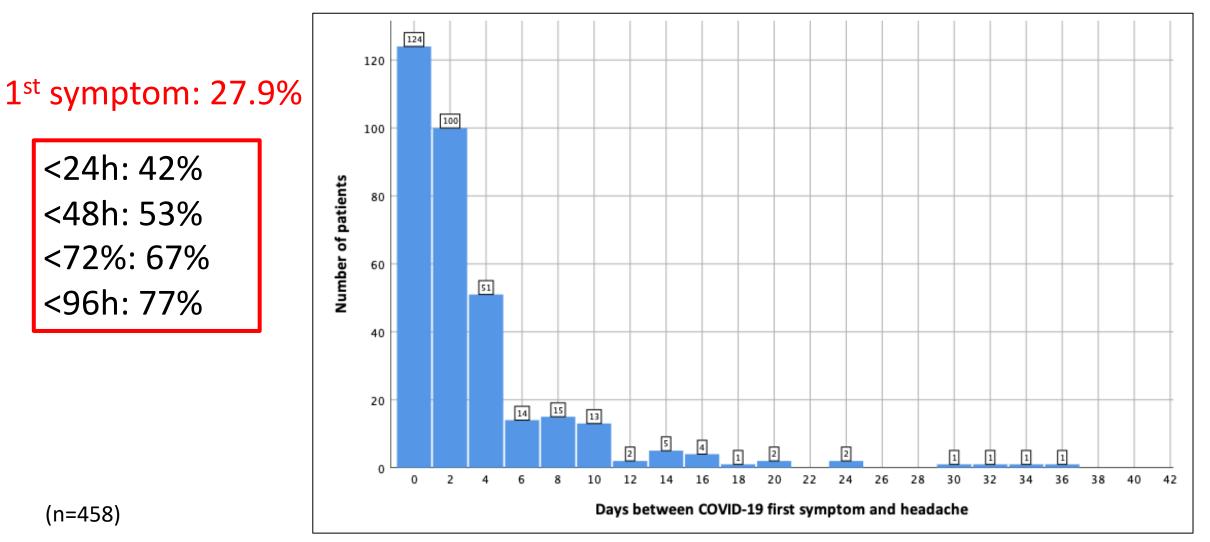

scientific reports


n=458

OPEN Frequency and phenotype of headache in covid-19: a study of 2194 patients

David García-Azorín^{®1⊠}, Álvaro Sierra¹, Javier Trigo¹, Ana Alberdi², María Blanco², Ismael Calcerrada², Ana Cornejo², Miguel Cubero², Ana Gil², Cristina García-Iglesias², Ana Guiomar Lozano², Cristina Martínez Badillo², Carol Montilla², Marta Mora², Gabriela Núñez², Marina Paniagua², Carolina Pérez², María Rojas², Marta Ruiz², Leticia Sierra², María Luisa Hurtado² & Ángel Luis Guerrero Peral^{1,3}

Frequency of headache

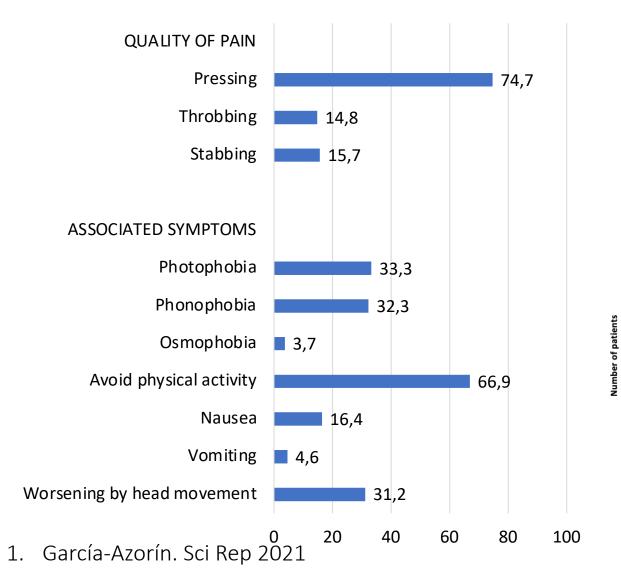


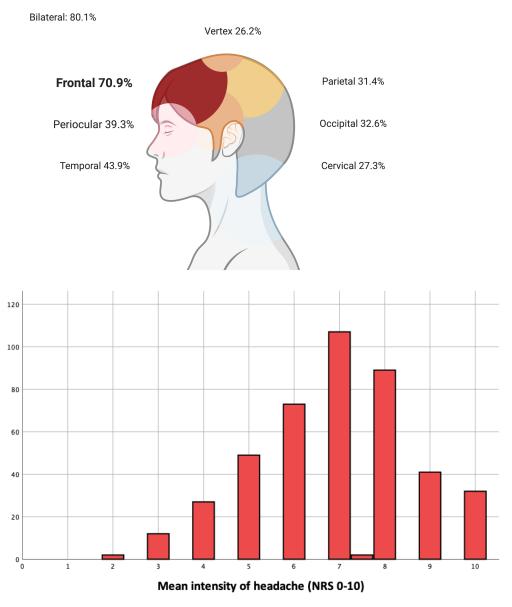
1. García-Azorín. Sci Rep 2021

1. Figure created with BioRender.com

Headache and anosmia are early symptoms

<24h: 42% <48h: 53% <72%: 67% <96h: 77%


(n=458)


García-Azorín. Sci Rep 2021 Talavera. J Neurol Sci 2020.

How does COVID-related headache

present?

Clinical phenotype

1. Figure created with BioRender.com

Can we misdiagnose

patients with COVID-19

as a primary headache disorder?

Diagnosis of secondary headache is based on the presence of red flags^{1, 2}

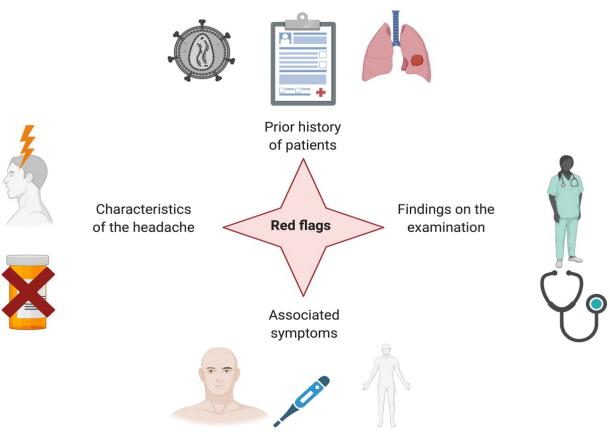
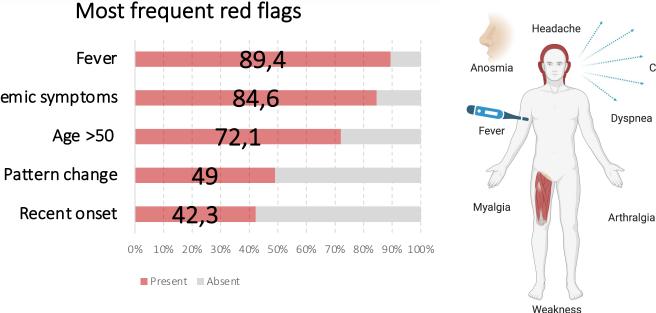


Figure created by David García-Azorín with BioRender.com

- 1. Friedman. Neurol Clin 2012
- 2. Do. Neurology 2019

Can we misdiagnose patients with COVID-19 as a primary headache disorder?

- All consecutive hospitalized patients (1st to patient 576) Valladolid
- Interviewed by a headache expert
- Structured interview


Research Submissions

Frequency and Type of Red Flags in Patients With Covid-19 and Headache: A Series of 104 Hospitalized Patients

David García-Azorín, MD^D; Javier Trigo, MD; Blanca Talavera, MD; Enrique Martínez-Pías, MD^D; Álvaro Sierra, MSci; Jesús Porta-Etessam, MD, PhD^D; Juan F. Arenillas, MD, PhD; Ángel L. Guerrero, MD, PhD

• Red flags frequency: 100%

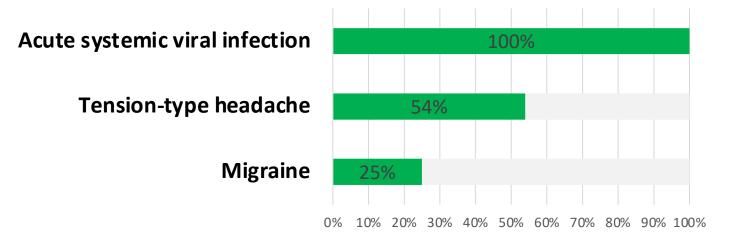
- 76% prior medical history
- 95% headache phenotype Systemic symptoms
- 100% systemic symptoms
- Abnormal labs: 94%.

May 2020

n=104

Cough

But still, may COVID-19 headache phenotype mimic a primary headache?

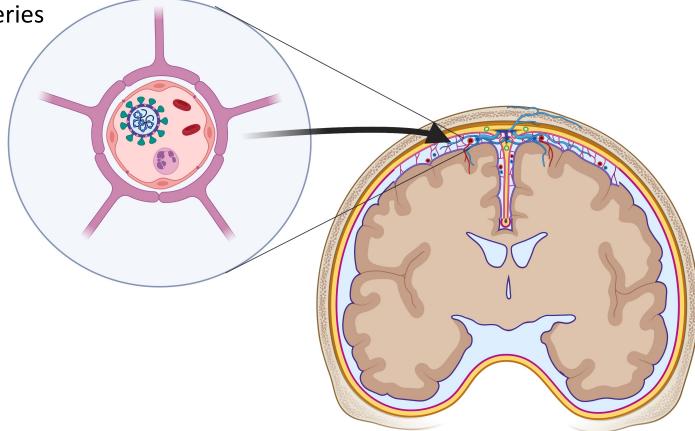

Original Article

Phenotypic characterization of acute headache attributed to SARS-CoV-2: An ICHD-3 validation study on 106 hospitalized patients Cephalalgia 2020, Vol. 40(13) 1432–1442 © International Headache Society 2020 CCCCCC Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0333102420965146 journals.sagepub.com/home/cep

Javier Trigo López¹, David García-Azorín^{1,2}, Álvaro Planchuelo-Gómez³, Cristina García-Iglesias¹, Carlos Dueñas-Gutiérrez⁴ and Ángel L Guerrero^{1,2,5}

Percentage of patients that **fulfilled phenotypic ICHD-3 criteria** for:

May 2020



n=106

Which is the cause of headache?

Does COVID-19 invade CNS? Positive PCR on CSF

- Not reported in most of the large series
- Few selected case reports
- Neuroturism?

- 1. Mao JAMA Neurol 2020;
- 2. Romero-Sánchez. *Neurology* 2020
- 3. Moriguchi. Int J Infect Dis 2020
- 4. Helms. N Engl J Med 2020
- 5. Romoli. Eur J Neurol 2020
- 6. García-Azorín. *J Neurol Sci* 2020
- 7. Frontera. J Neurol Sci 2020

Demographical profile

Author	García-Azorín	Magdy	Porta-Etessam	Membrilla	Caronna	Poncet- Megemont
n	458	172	112	99	97	82
Age	51 [42-61]	33 [27-42]	43 (SD: 11)	43 (SD: 11)	51 (SD: 15)	47 (SD: 14)
Female sex	72%	63%	81%	36%	67%	67%
Prior history of headache	49%	53%	27%	33%	20% (migraine)	NS

- 1. García-Azorín. *Sci Rep* 2021
- 2. Magdy. *Cephalalgia* 2020
- 3. Porta-Etessam. *Headache* 2020
- 4. Membrilla. *Headache* 2020
- 5. Caronna. *Cephalalgia* 2020
- 6. Poncet-Megemont *Headache* 2020

The Journal of Headache and Pain

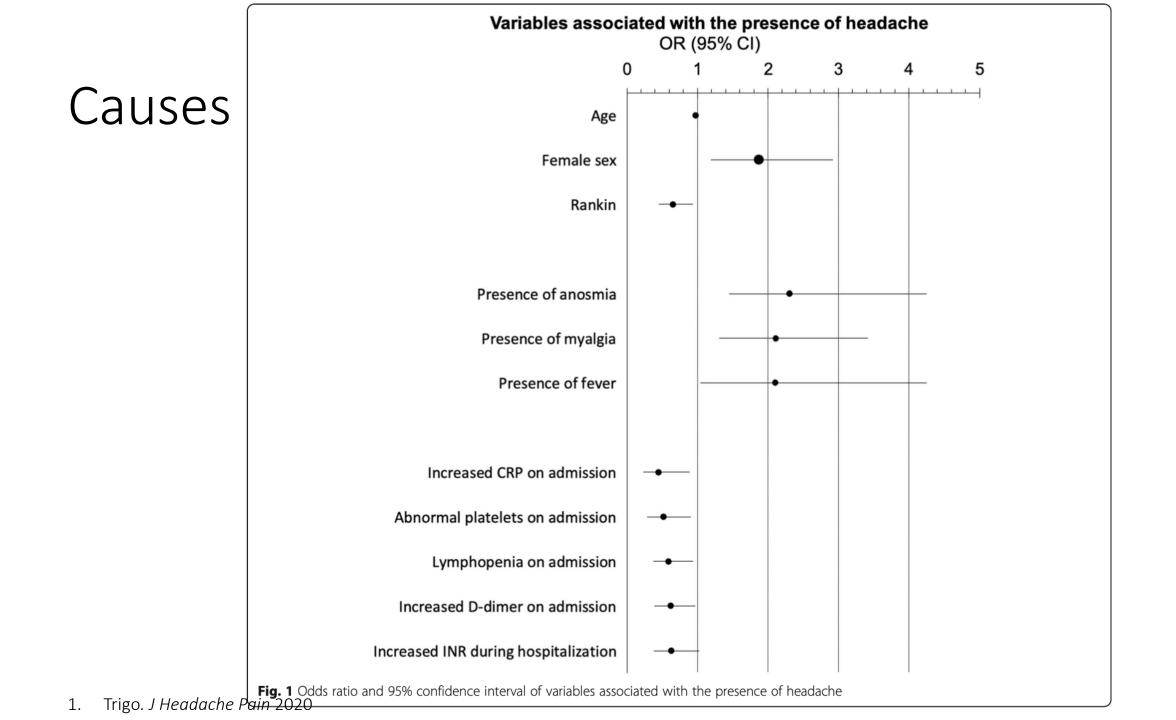
RESEARCH ARTICLE

Factors associated with the presence of headache in hospitalized COVID-19 patients and impact on prognosis: a retrospective cohort study

Javier Trigo¹, David García-Azorín^{1*}, Álvaro Planchuelo-Gómez², Enrique Martínez-Pías¹, Blanca Talavera¹, Isabel Hernández-Pérez¹, Gonzalo Valle-Peñacoba¹, Paula Simón-Campo¹, Mercedes de Lera¹, Alba Chavarría-Miranda¹, Cristina López-Sanz¹, María Gutiérrez-Sánchez¹, Elena Martínez-Velasco¹, María Pedraza¹, Álvaro Sierra¹, Beatriz Gómez-Vicente¹, Juan Francisco Arenillas^{1,3,4} and Ángel L. Guerrero^{1,3}

- Patients with headache are different from patients without headache
- The direct calculation **must be adjusted** for:
 - Age, sex, prior medical history, and other posible confounders.

Check for updates

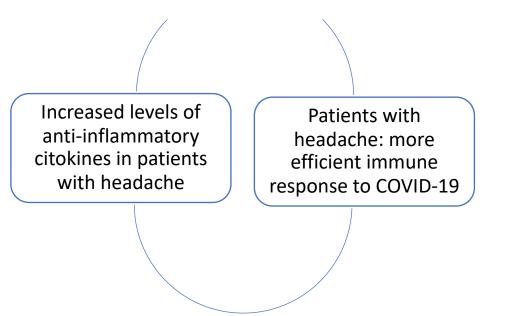


Same prognosis?

Causes of the headache (n=576)

- 56 variables included in the univariate model¹.
 - 39 had a *P* value <0.1 \rightarrow included in a multivariate model.
 - 11 variables were statistically significant.
 - 10 variables remained significant after adjusting for multiple comparisons by using False-Discovery Rate².

- 1. Trigo. *J Headache Pain* 2020
- 2. Benjamini. Stat Soc Ser B 1995



The Journal of Headache and Pain

RESEARCH ARTICLE

Cytokine and interleukin profile in patients with headache and COVID-19: A pilot, CASE-control, study on 104 patients

Javier Trigo¹, David García-Azorín¹, Álvaro Sierra-Mencía¹, Álvaro Tamayo-Velasco², Pedro Martínez-Paz^{3*}, Eduardo Tamayo^{3,4}, Angel Luis Guerrero^{1,5} and Hugo Gonzalo-Benito⁶

May 2020

Is the clinical phenotype of the headache

linked to the severity of the COVID-19?


ORIGINAL RESEARCH published: 17 December 2020 doi: 10.3389/fneur.2020.583870

Deep Phenotyping of Headache in Hospitalized COVID-19 Patients *via* Principal Component Analysis

Álvaro Planchuelo-Gómez¹, Javier Trigo², Rodrigo de Luis-García¹, Ángel L. Guerrero^{2,3,4*}, Jesús Porta-Etessam⁵ and David García-Azorín^{2,3}

¹ Imaging Processing Laboratory, Universidad de Valladolid, Valladolid, Spain, ² Headache Unit, Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain, ³ Neuroscience Research Unit, Institute for Biomedical Research of Salamanca, Salamanca, Spain, ⁴ Department of Medicine, Universidad de Valladolid, Valladolid, Spain, ⁶ Headache Unit, Department of Neurology, Hospital Clínico San Carlos, Madrid, Spain

- Migraine-like phenotype → correlated with:
 - More severe clinical course
 - Altered inflammatory markers
 - Higher intensity and disability

How frequent is headache after COVID-19?

- As of July 2021
- 35 studies
- N=28.438 COVID survivors
- 6 months •

*

Hospitalised

Percentage

60

40

20

0

Received: 11 July 2021 Accepted: 22 July 2021 DOI: 10.1111/ene.15040

SHORT COMMUNICATION

Onset

30 days

60 davs

90 days

✻

All patients

*

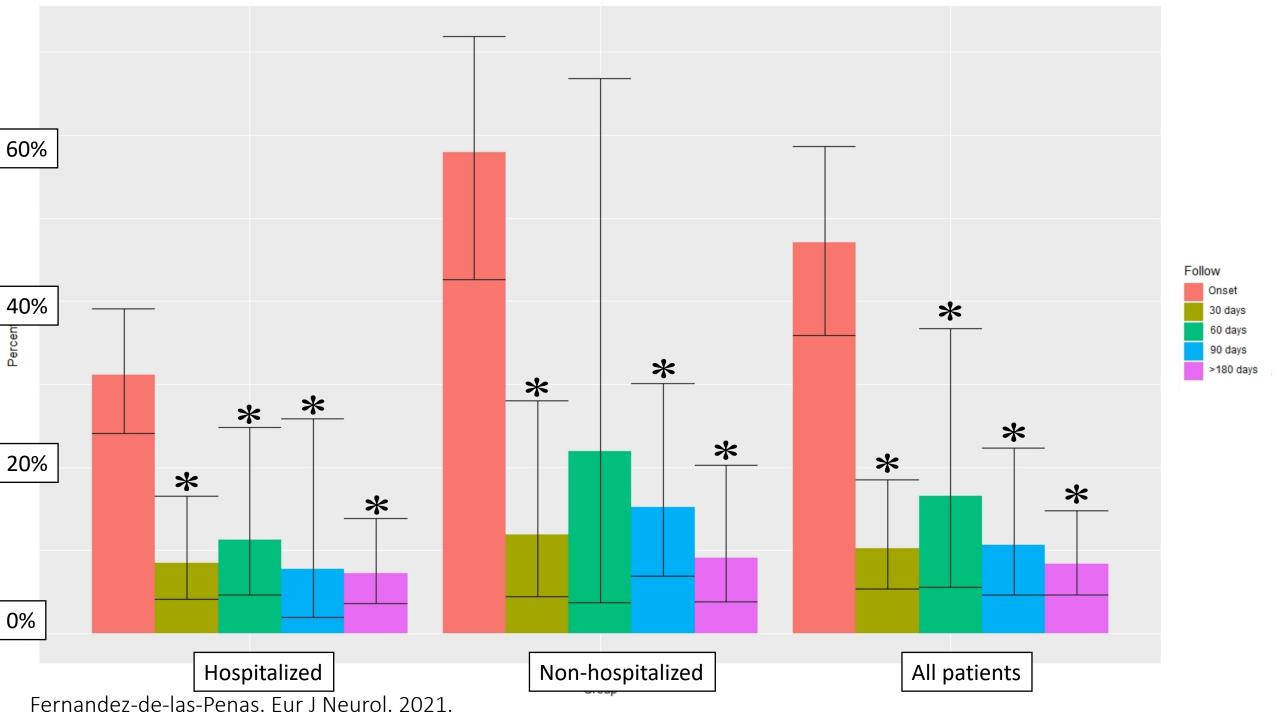
*

*

*

Non-hospitalised

*


european journa of neurology

Headache as an acute and post-COVID-19 symptom in COVID-19 survivors: A meta-analysis of the current literature

César Fernández-de-las-Peñas^{1,2} Marcos Navarro-Santana³ Víctor Gómez-Mayordomo⁴ | María L. Cuadrado^{4,5} | David García-Azorín^{6,7} Lars Arendt-Nielsen^{2,8} | Gustavo Plaza-Manzano^{3,9}

erapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos (URJC), Madrid, Spain and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark Rehabilitation and Physiotherapy, Universidad Complutense de Madrid, Madrid, Spain Hospital Clínico San Carlos, Madrid, Spain chool of Medicine, Universidad Complutense de Madrid, Madrid, Spain ıt of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain it, Institute for Biomedical Research of Salamanca, Salamanca, Spain stroenterology, Aalborg University Hospital, Aalborg, Denmark >180 days anitaria del Hospital Clínico San Carlos, Madrid, Spain

> Between 10-20% of COVID patients present headache during post-COVID

Post-COVID-19 persistent headache: A multicentric 9-months follow-up study of 905 patients

David Garcia-Azorin¹, Almudena Layos-Romero², Jesús Porta-Etessam^{3,4,5}, Javier A Membrilla^{6,7}, Edoardo Caronna^{8,9}, Alicia Gonzalez-Martinez¹⁰, Álvaro Sierra Mencia¹, Tomás Segura², Nuria Gonzalez-García^{3,4,5}, Javier Díaz-de-Terán^{6,7}, Victor J Gallardo⁹, Ana Beatriz Gago-Veiga¹⁰, Alejandro Ballvé⁸, Javier Trigo López¹, María Sastre-Real^{6,7}, Arnau Llauradó⁸, Ana Cornejo¹¹, Íñigo de Lorenzo^{6,7}, Ángel Guerrero-Peral^{1,12}, and Patricia Pozo-Rosich^{8,9}

- May-April 2020 \rightarrow 9 months follow-up
- Data from 6 cohorts

HOSPITAL CLÍNICO

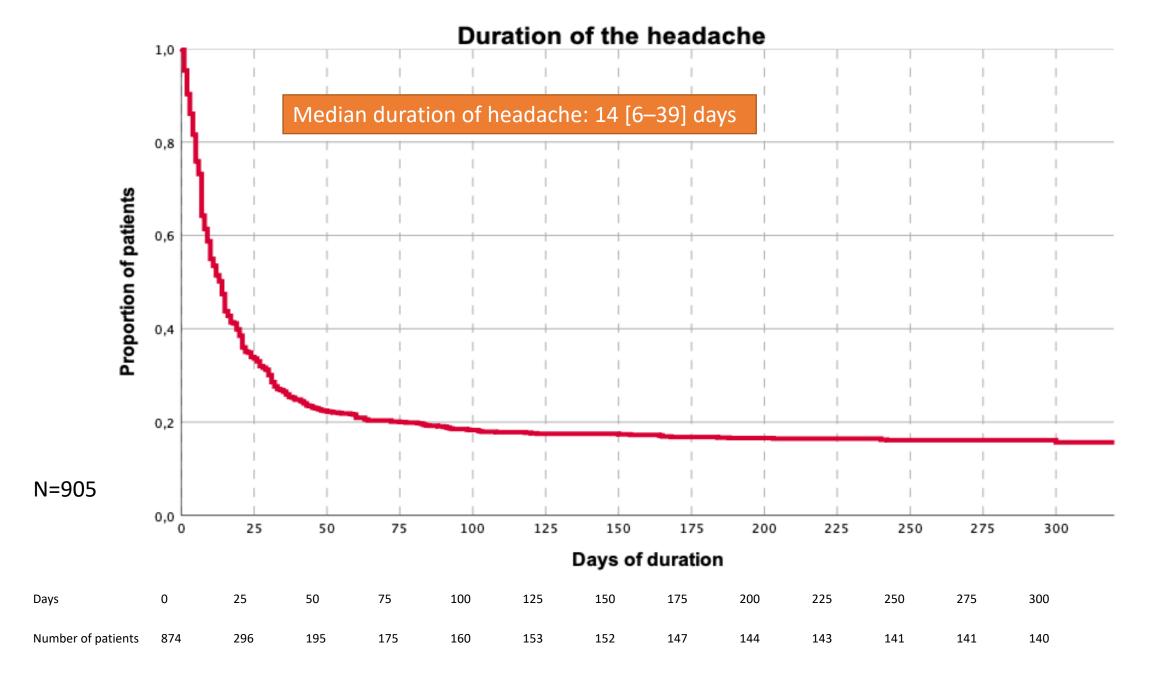
UNIVERSITARIO DE VALLADOLID

Hospitalized and non-hospitalized

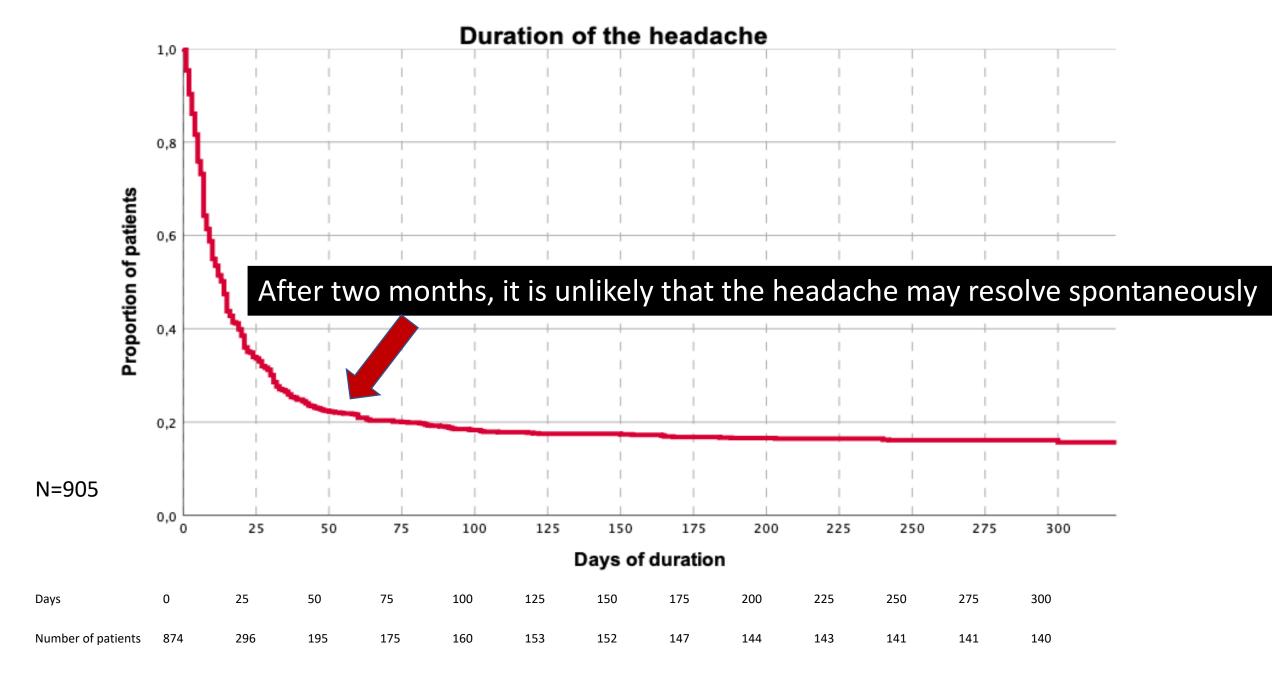
Cephalalgi 0(0) 1-6 © International Headache Society 2022 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/03331024211068074 journals.sagepub.com/home/cep (\$)SAGE

COMPLEJO

Hospital Clínico SaludMadrid San Carlos


HOSPITALARIO

UNIVERSITARIO


DE ALBACETE

Vall d'Hebron Institut de Recerca

1. García-Azorín. *Cephalalgia* 2022

1. García-Azorín. *Cephalalgia* 2022

Predictors of more prolonged duration

Variable	OR	95% CI
Female sex	0.85	0.74-0.98
Headache intensity	0.62	0.56-0.69
Pressing quality of the headache	1.29	1.18-1.48
Throbbing quality of the headache	0.76	0.64-0.8
Photophobia / Phonophobia	0.83	0.72-0.95
Worsening by physical activity	0.82	0.71-0.94

1. García-Azorín. *Cephalalgia* 2022

Is migraine a risk factor for persistent post-COVID headache?

Previous History of Migraine Is Associated With Fatigue, but Not Headache, as Long-Term Post-COVID Symptom After Severe Acute Respiratory SARS-CoV-2 Infection: A Case-Control Study

César Fernández-de-las-Peñas¹*, Víctor Gómez-Mayordomo², David García-Azorín^{3,4}, Domingo Palacios-Ceña¹, Lidiane L. Florencio¹, Angel L. Guerrero^{3,4,5}, Valentín Hernández-Barrera⁶ and María L. Cuadrado^{2,7}

n=201

57 patients with migraine+ 144 controls. Evaluated 7 months after the acute phase

COVID patients with prior history of migraine

Higher frequency of post-COVID symptoms Higher frequency of fatigue

No higher frequency of post-COVID headache

Original Article

The presence of headache at onset in SARS-CoV-2 infection is associated with long-term post-COVID headache and fatigue: A case-control study

César Fernández-de-las-Peñas¹, Víctor Gómez-Mayordomo², María L Cuadrado^{2,3}, Domingo Palacios-Ceña¹, Lidiane L Florencio¹, Angel L Guerrero^{4,5,6}, David García-Azorín^{4,5}, Valentín Hernández-Barrera⁷ and Lars Arendt-Nielsen⁸

Headache during COVID

February-

May 2020

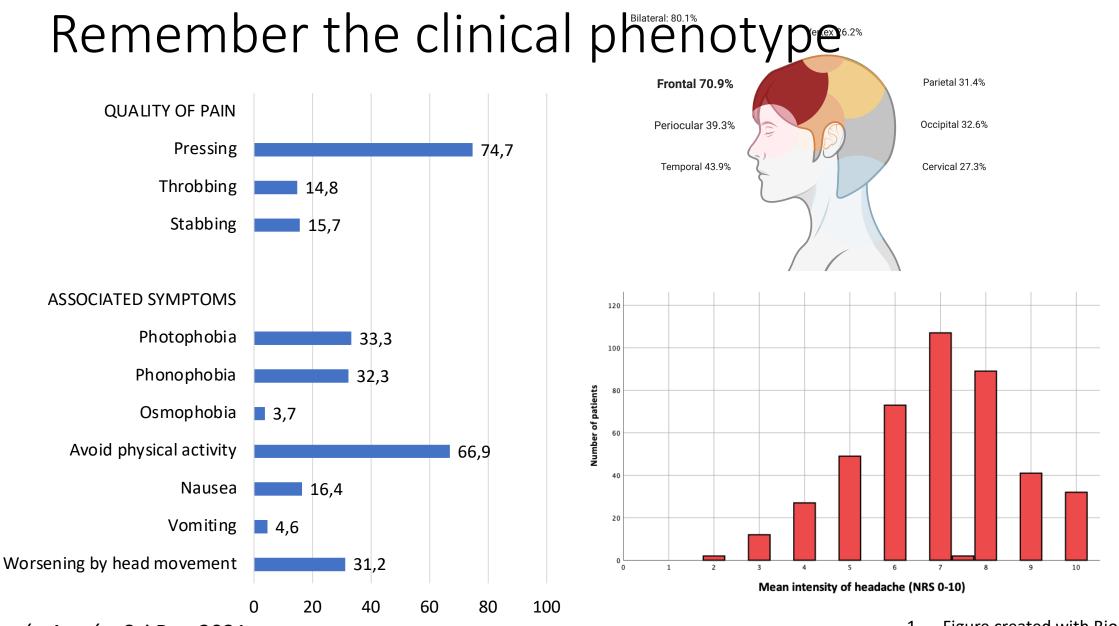
n=615

205 patients with headache vs 410 controls. Evaluated 7 months after the acute phase

Higher frequency of symptoms during post-COVID Higher frequency of fatigue during post-COVID Presence of headache with a tensión-type phenotype What is the effect of vaccination on post-COVID headache?

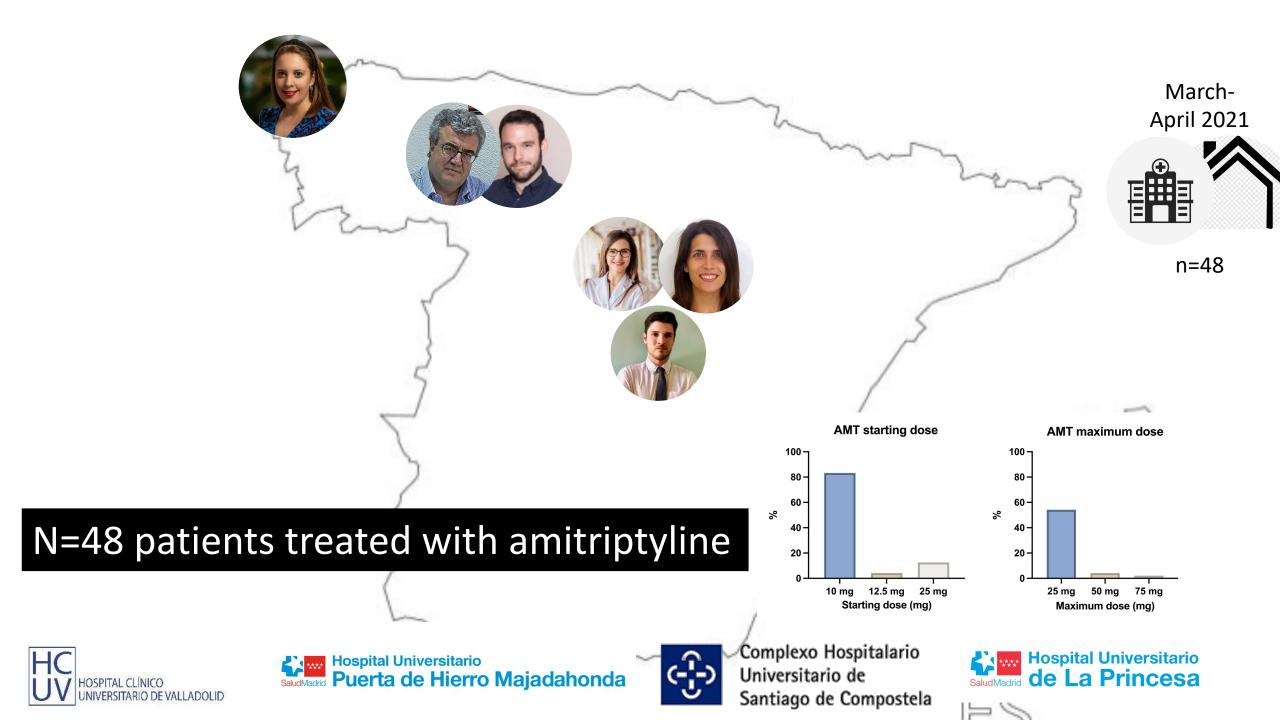
- Patients that had COVID after being adequately vaccinated and had headache during the acute pase
- N=104

Non vaccinated (n=350) Vaccinated (n=104)

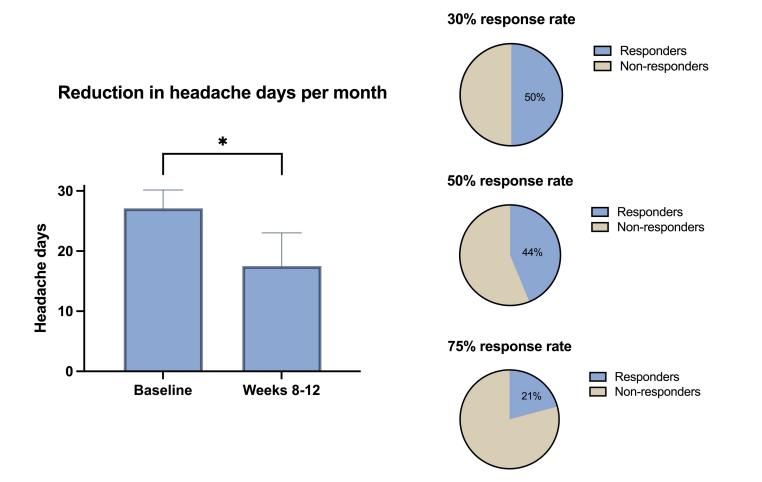

Duration of 4 [IQR: 2-8] days in vaccinated vs. 8 [IQR 4-

21] days in non-vaccinated, (p<0,001).

1. Ruiz Saez. In preparation


Treatment?

What about post-COVID headache treatment?



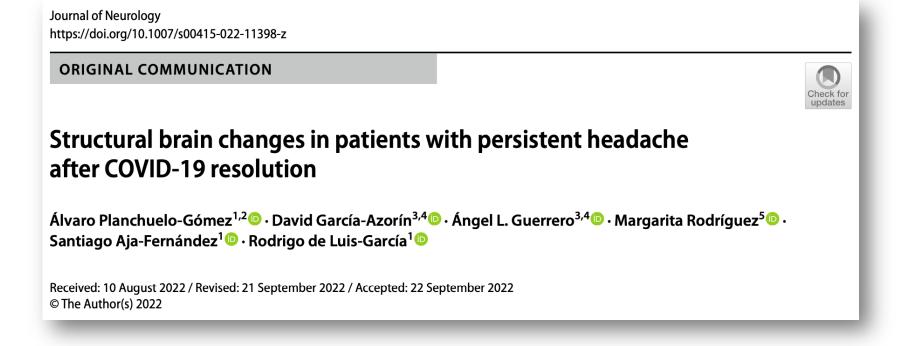
García-Azorín. Sci Rep 2021

^{1.} Figure created with BioRender.com

Response to amitriptyline

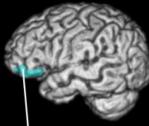
González-Martínez. J Neurol 2022

Predictors of amitriptyline response


			95% CI LOWER LIMIT, CI UPPER	
VARIABLE	ANÁLISIS	OR	LIMIT	P VALUE
Months from COVID-19 to treatment	Univariate	-0.641	(-1.402, -0.042)	0.036*
	Multivariate	-0.429	(-1.253, 0.395)	0.299
Prior history of TTH	Univariate	11.535	(1.555, 21.515)	0.024*
	Multivariate	10.966	(1.316, 20.617)	0.027*
Prior history of anxiety or depression	Univariate	7.862	(0.558, 15.167)	0.035*
	Multivariate	2.778	(-4.661, 10.216)	0.455
Prior history of insomnia	Univariate	7.037	(-0.342, 14.415)	0.061
	Multivariate	1.687	(-5.916, 9.290)	0.656
Nausea	Univariate	-9.531	(-15.756, -3.307)	0.003*
	Multivariate	-8.547	(-14.624, -2-470)	0.007**
Initial dose of Amitriptyline (mg)	Univariate	-0.633	(-1.257, -0.009)	0.047*
	Multivariate	-0.322	(-0.909, 0.265)	0.275

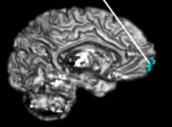
González-Martínez. J Neurol 2022

What happens in the brain of patients with persistent post-COVID headache?



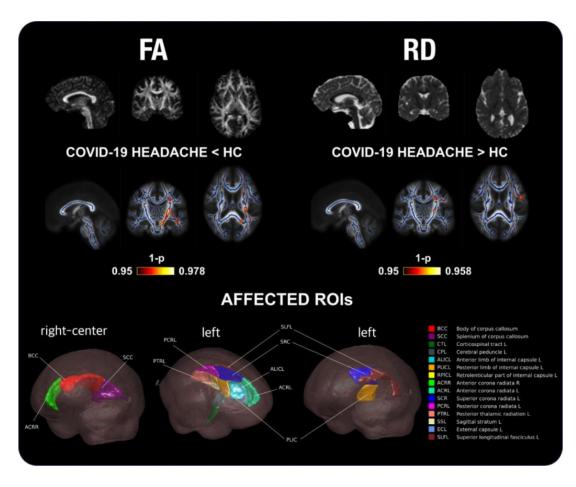
- n=42 patients with persistent post-COVID headache (6 months) with no prior history of headache
- n=42 healthy controls (prior to COVID era)
- n=43 episodic migraine patients (prior to COVID era)
- n=43 chronic migraine patients (prior to COVID era)

Structural brain changes in patients with persistent post-COVID headache


GRAY MATTER PATTERN OF CHANGE COVID-19 HEADACHE VS. CONTROLS

L pars orbitalis (GMV)

R frontal pole (GMV)


COVID-19 headache < HC

R pars orbitalis (GMV+CT) R fusiform gyrus (GMV)

CC = cortical curvature CT = cortical thickness GMV = gray matter volume

	нс			EM			СМ					
Desikan-Killiany atlas	сс	СТ	SA	GMV	сс	СТ	SA	GMV	сс	СТ	SA	GMV
L banks of the superior temporal sulcus										0.79		
L caudal middle frontal												0.68
L cuneus									0.79			
L paracentral						0.78				0.79		0.59
L pars orbitalis				0.67								
L rostral anterior cingulate		0.74*										
L posterior cingulate												0.54
Laccumbens								0.64				
R thalamus								0.50				
R fusiform				0.64								
R pars orbitalis		0.76		0.59								
R precuneus									0.76			
R frontal pole				0.66								
Total	0	2	0	4	0	1	0	2	2	2	0	3

Structural brain changes in patients with persistent post-COVID headache

Widespread white matter changes,

with a pattern that ressembles that

of migraine, but more subtle.

Are these changes COVIDspecific? Headache-specific?

Questions

Is the headache-phenotype relevant?

Are the changes persistent?

Neurological symptoms following vaccination to prevent COVID-19

Vaccination may be associated with neurological manifestations

- 1 CVT per 100,000-1,000,000 non-replicant adenovirus vector-based vaccines¹
- 227 cases of GBS out of 51M doses of AstraZeneca vaccine²
- But COVID is even worse:
 - RR CVT in COVID: 14.3 (95% CI: 3.9-36.8) to 1589 (95% CI: 192-5740)^{3, 4}
 - RR Guillain-Barré syndrome in COVID: 6.30 (95% CI: 3.2-12.5)⁵

CVT: Cerebral Venous Thrombosis, GBS: Guillain-Barre syndrome, M: Million, RR: Relative risk, CI: Confidence Interval.

^{1.} WHO. Guidance for clinical case management of thrombosis with thrombocytopenia syndrome (TTS) following vaccination to prevent coronavirus disease (COVID-19)

^{2.} European Medicines Agency. Pharmacovigilance Risk Assessment Committee meeting 5-8 July 2021.

^{3.} Mahammedi A. Brain and Lung Imaging Correlation in Patients with COVID-19: Could the Severity of Lung Disease Reflect the Prevalence of Acute Abnormalities on Neuroimaging? A Global Multicenter Observational Study. AJNR Am J Neuroradiol. 2021 Jun;42(6):1008-1016. doi: 10.3174/ajnr.A7072. Epub 2021 Mar 11. PMID: 33707278; PMCID: PMC8191655.

^{4.} Koh JS. Neurology of COVID-19 in Singapore. J Neurol Sci. 2020 Nov 15;418:117118. doi: 10.1016/j.jns.2020.117118. Epub 2020 Sep 3. Erratum in: J Neurol Sci. 2021 May 15;424:117406. PMID: 32977228; PMCID: PMC7470792.

^{5.} SIESTA (Spanish Investigators in Emergency Situations Team) network. Incidence, clinical, risk factors and outcomes of Guillain-Barré in Covid-19. Ann Neurol. 2021 Mar;89(3):598-603.

Thrombosis with thrombocytopenia syndrome

- 1. TTS is a rare syndrome observed following non-replicant adenovirus vector-based vaccines
- 2. 1 case per 100,000-1,000,000 vaccine doses
 - 1. 1st dose, > Younger patients
- 3. Caused by anti-platelet factor 4 antibodies

WHO classification of $TTS_{Thrombosis}$

Uncommon location

Cerebral venous sinus thrombosis Splanchnic thrombosis Multiple organs **Common location**

Ischemic stroke Pulmonary embolism Myocardial infarction Deep vein thrombosis

....

Thrombocytopenia Platelets <150 x 10⁹/L Platelets <50% baseline

Possible

thrombosis

Imaging studies available?

adequately ruled out

> Confirmed Suggestive thrombosis thrombosis

WHO. Guidance for clinical case management of thrombosis with thrombocytopenia syndrome (TTS) following vaccination to prevent coronavirus disease (COVID-19)

	Uncommon location	Common location		1	
Severe thrombocytopenia Platelets <50 x 10 ⁹ /L	Confirmed TTS	Probable TTS	Possible TTS	Possible TTS	
Mild-to-moderate thrombocytopenia Platelets <150 x 10 ⁹ /L	Probable TTS	Possible TTS	Possible TTS	Possible TTS	

TTS Work-up

Vaccination against COVID-19 in the last 30 days

Clinical suspicion of thrombosis

Pre-TTS syndrome Delayed-onset headache with progressive worsening, resistance to treatment, worsening with supine position, exertion or coughing

Laboratory work-up

Evaluation of thrombocytopenia

Platelet count Platelets <150 x 10⁹/L Platelets <50% baseline

Determination of anti-platelet factor 4 antibodies

ELISA Not with rapid tests

Early treatment

Uncommon location thrombosis

Cerebral venous sinus thrombosis: headache, visual disturbances, seizures, focal neurological symptoms, decreased level of

consciousness

Splanchnic thrombosis: abdominal pain, bloating, nausea, vomiting, diarrhoea, fever, bleeding, anorexia

Common location thrombosis

Ischemic stroke: sudden onset focal neurological symptoms of cerebral origin

- Pulmonary embolisms: dyspnea, chest pain, haemoptysis, syncope, palpitations, sudden impairment of physical performance
 - Myocardial infarction: chest pain, shortness of breath, cyanosis, sudden death
 - Limb vein thrombosis: unilateral or bilateral swelling, pain, tenderness, redness

Other supporting laboratory parameters D-dimer > 4000 µg/L FEU

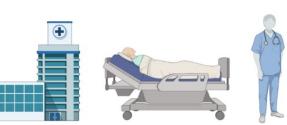
Peripheral smear Reduced platelet counts Small platelet aggregates No platelet clumping

Clinical suspicion of thrombosis and diagnosis confirmation

Confirm

diagnosis of

thrombosis


by imaging,

pathology or

surgery

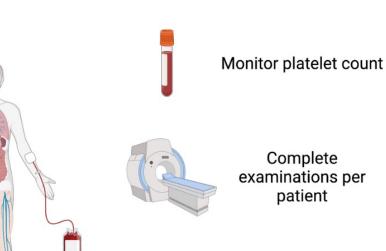
Laboratory diagnosis of Cl thrombocytopenia and TTS

Treatment of TTS

Patients should be hospitalized and closely monitored

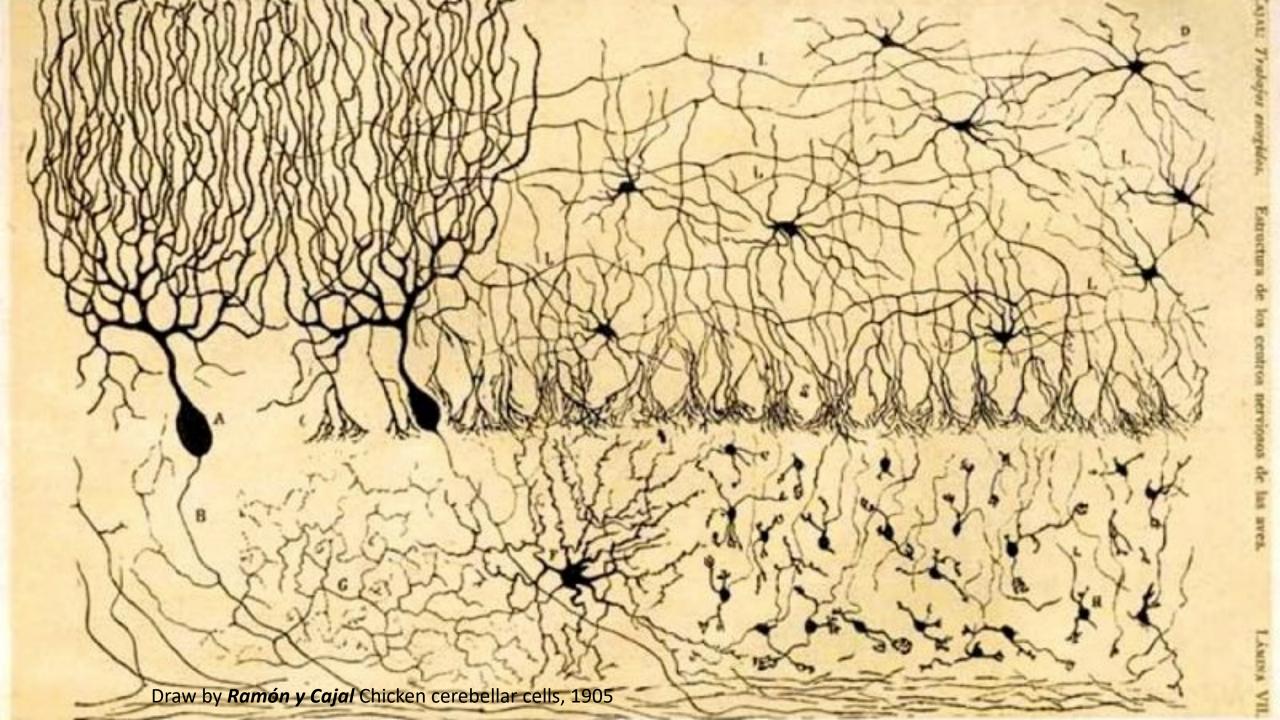
Avoid platelet transfusions

In all cases other than emergency situations where surgery is strongly indicated, thrombocytopenia is severe, and platelet transfusion is required to be able to proceed with emergency surgery


Avoid heparin based anticoagulation

For individuals with TTS following vaccination with a COVID-19 vaccine

Administer non-heparin based anticoagulants Argatroban, bivalirudine, fondaparinux, danaparoid, rivaroxaban, apixaban, dabigatran


Consider IV Immunoglobulins 1 g/kg x 2 days or 0.4g/kg x 5 days

Report the case

PCR test for COVID-19

WHO. Guidance for clinical case management of thrombosis with thrombocytopenia syndrome (TTS) following vaccination to prevent coronavirus disease (COVID-19)

Conclusions

- 1. COVID is polymorph: Include it in the differential diagnosis
- 2. Symptoms can be related with the virus, the immune response or the presence of systemic complications
- 3. Manifestations may arise after the acute phase or persist
- 4. Do treat the treatable manifestations

Thank you!

- Headache Unit
 - Ángel Guerrero
 - Álvaro Sierra
 - Yésica González
 - Andrea Recio
 - Blanca Martínez
 - Ana Echavarría
 - Imaging Processing Laboratory
 - Alvaro Planchuelo
 - Rodrigo de Luis
 - Santiago Aja
- Valladolid University

•

•

- Henar Ruiz
- Claudia García
- Yolanda Álvarez
- Department of Neurology
 - Javier Trigo
 - Enrique Martínez
 - Blanca Talavera
 - Alba Chavarría

- Isabel Hernández
- Gonzalo Valle
- Cristina López
- Mercedes de Lera
- Paula Simón
- Elena Martínez
- Beatríz Gómez
- María Pedraza
- Juan Arenillas
- Department of Radiology:

٠

- Margarita Rodríguez
- Department of Emergency Medicine
 - Carlos del Pozo
 - Marta Celorrio
- Valladolid East Primary Care Area
 - Ana Alberdi
 - María Blanco
 - Ismael Calcerrada
 - Ana Cornejo
 - Miguel Cubero

- Ana Gil
- Cristina García
- Ana Guiomar Lozano
- Cristina Badillo
- Carol Montilla
- Marta Mora
- Marina Paniagua
- Carolina Pérez
- María Rojas
- Marta Ruiz
- Leticia Sierra
- Maria Luisa Hurtado
- National influenza center
 - Ivan Sanz
- Spanish Society of Neurology
 - David Ezpeleta
 - Jesús Porta
 - Miguel Láinez