

Bacterial Meningitis in adults and children

Erich Schmutzhard

e

Dept. of Neurology, NICU, Medical University Innsbruck, Austria

and

Bernhard-Nocht-Institute for Tropical Medicine

University Medical Centre Hamburg Eppendorf, Germany

and

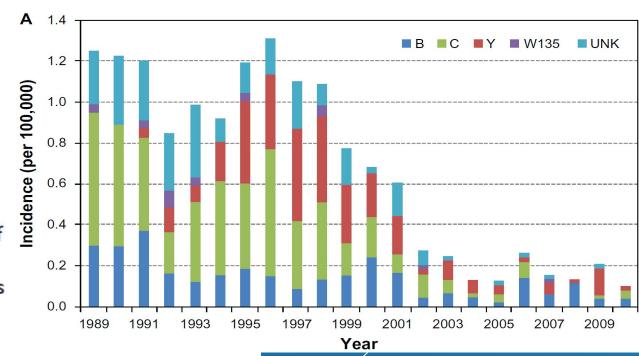
Centre for Global Health

Technical University Munich, Germany

Acute Bacterial Meningitis may be

- Community Acquired Meningitis
- **→** Hospital Acquired Meningitis

open access to scientific and medical research



REVIEW

Meningococcal disease: changes in epidemiology and prevention

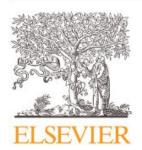
Qiuzhi Chang¹ Yih-Ling Tzeng² David S Stephens¹⁻³

Department of Epidemiology,
Rollins School of Public Health,
Emory University, Department of
Medicine, Emory University School of
Medicine, Laboratories of Microbial
Pathogenesis, Department of Veterans
Affairs Medical Center, Atlanta, GA

Clinical Epidemiology 2012:4 237–245

ORIGINAL ARTICLE

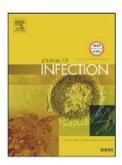
Bacterial Meningitis in the United States, 1998–2007


Michael C. Thigpen, M.D., Cynthia G. Whitney, M.D., M.P.H.,
Nancy E. Messonnier, M.D., Elizabeth R. Zell, M.Stat., Ruth Lynfield, M.D.,
James L. Hadler, M.D., M.P.H., Lee H. Harrison, M.D., Monica M. Farley, M.D.,
Arthur Reingold, M.D., Nancy M. Bennett, M.D., Allen S. Craig, M.D.,
William Schaffner, M.D., Ann Thomas, M.D., Melissa M. Lewis, M.P.H.,
Elaine Scallan, Ph.D., and Anne Schuchat, M.D.,
for the Emerging Infections Programs Network

N Engl J Med 2011;364:2016-25.

Table 1. Incidence of Bacterial Meningitis in the United States, 1998–2007, Stratified According to Age Group, Race, and Pathogen.*									
Characteristic	1998–1999	2000–2001 no. of cas	2002–2003 ses per 100,000 population	2004–2005	2006–2007	Percent Change, 2006– 2007 vs. 1998–1999 (95% CI)			
Age group									
<2 Mo	73.46 (56.45 to 94.35)	88.28 (69.69 to 109.95)	56.59 (42.13 to 74.45)	77.27 (60.58 to 96.90)	80.69 (63.53 to 101.42)	10 (1 to 20)			
2–23 Mo	14.20 (11.85 to 16.91)	11.49 (9.45 to 13.92)	6.56 (5.06 to 8.38)	6.95 (5.47 to 8.89)	6.91 (5.30 to 8.77)	-51 (-55 to -48)			
2–10 Yr	1.55 (1.20 to 1.96)	1.48 (1.16 to 1.88)	0.94 (0.68 to 1.27)	1.07 (0.79 to 1.43)	0.56 (0.36 to 0.82)	-64 (-68 to -59)			
11–17 Yr	1.03 (0.71 to 1.43)	0.87 (0.60 to 1.22)	0.62 (0.39 to 0.94)	0.56 (0.34 to 0.86)	0.43 (0.25 to 0.71)	-58 (-64 to -51)			
18–34 Yr	0.99 (0.79 to 1.22)	0.86 (0.68 to 1.07)	0.70 (0.54 to 0.89)	0.76 (0.59 to 0.97)	0.66 (0.50 to 0.86)	-33 (-38 to -27)			
35–49 Yr	1.23 (1.01 to 1.48)	1.30 (1.08 to 1.55)	1.08 (0.89 to 1.31)	0.91 (0.74 to 1.13)	0.95 (0.76 to 1.16)	-23 (-29 to -17)			
50–64 Yr	2.15 (1.75 to 2.57)	1.83 (1.49 to 2.21)	2.09 (1.75 to 2.48)	1.79 (1.49 to 2.14)	1.73 (1.44 to 2.06)	−19 (−25 to −14)			
≥65 Yr	2.64 (2.13 to 3.16)	2.20 (1.76 to 2.72)	2.21 (1.78 to 2.71)	1.51 (1.16 to 1.94)	1.92 (1.53 to 2.38)	-27 (-32 to -22)			
Allagos	2.00 (1.85 +0.2.15)	1 92 (1 60 to 1 07)	1 40 /1 38 +0 1 62)	1 41 (1 20 +0 1 54)	1 29 (1 27 + 1 50)	21 / 22 to -29)			
aged <2 months	: mild increase	se in incidend	e						
all other age gro	ups. i.e. todd	lers, children,	elderlies: dec	creased incide	ence	to -23)			
						to -37)			
BIG FOUR, i.e. M	leningococci,	Pneumococci	, HiB, Listeria	spp: decreas	sed incidence	to -64)			
r autogen									
Streptococcus pneumoniae	1.09 (0.98 to 1.20)	1.03 (0.93 to 1.13)	0.93 (0.83 to 1.03)	0.76 (0.68 to 0.85)	0.81 (0.72 to 0.90)	-26 (-29 to -23)			
Neisseria meningitidis	0.44 (0.37 to 0.51)	0.37 (0.31 to 0.44)	0.23 (0.19 to 0.29)	0.22 (0.17 to 0.27)	0.19 (0.14 to 0.24)	-58 (-61 to -54)			
Group B streptococcus	0.24 (0.20 to 0.30)	0.30 (0.25 to 0.36)	0.21 (0.17 to 0.26)	0.27 (0.22 to 0.32)	0.25 (0.21 to 0.31)	4 (-3 to 12)			
Haemophilus influenzae	0.12 (0.09 to 0.17)	0.10 (0.07 to 0.14)	0.10 (0.07 to 0.13)	0.10 (0.07 to 0.14)	0.08 (0.05 to 0.11)	-35 (-42 to -27)			
Listeria monocytogenes	0.10 (0.08 to 0.16)	0.03 (0.01 to 0.05)	0.03 (0.01 to 0.05)	0.05 (0.04 to 0.10)	0.05 (0.03 to 0.08)	-46 (-53 to -39)			

^{*} CI denotes confidence interval.


[†] Race was obtained from medical records. "Other" includes American Indian or Alaska Native, Asian or Pacific Islander, or other race. Within a site and age group, cases with missing data for race were assumed to have a distribution of race similar to that among cases with available data.

Contents lists available at ScienceDirect

Journal of Infection

journal homepage: www.elsevier.com/locate/jinf

Review

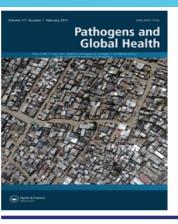
The everchanging epidemiology of meningococcal disease worldwide and the potential for prevention through vaccination

Sydel R. Parikh^a, Helen Campbell^a, Julie A. Bettinger^b, Lee H. Harrison^c, Helen S Marshall^d, Federico Martinon-Torres^e, Marco Aurelio Safadi, MD, PhD^f, Zhujun Shao^g, Bingqing Zhu^g, Anne von Gottberg^h, Ray Borrowⁱ, Mary E Ramsay^a, Shamez N Ladhani^{a,j,*}

- ^a Immunisation and Countermeasures Division, Public Health England, 61 Colindale Avenue, London, UK
- ^b Vaccine Evaluation Center, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- ^c Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- ^d Robinson Research Institute and Adelaide Medical School, The University of Adelaide and Women's and Children's Health Network, Adelaide, South Australia
- ^e Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
- ^f Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
- ^g State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- ^h Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- ¹Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom.
- Paediatric Infectious Diseases Research Group (PIDRG), St. George's University of London, Cranmer Terrace, London SW17 ORE, UK

African countries to introduce new meningitis vaccine

A Vaccine Meets Its Promise: Success in Controlling Epidemic Meningitis in Sub-Saharan Africa


Luis Sambo, Margaret Chan, Steve Davis, Anthony Lake, Seth Berkley, Cyrus Poonawalla, and Christopher J. Elias

¹World Health Organization, Regional Office for Africa, Brazzaville, Republic of Congo; ²World Health Organization, Geneva, Switzerland; ³PATH, Seattle, Washington; ⁴United Nations Children's Fund, New York, New York; ⁵Gavi, Geneva, Switzerland; ⁶Serum Institute of India Ltd, Pune; and ⁷Bill & Melinda Gates Foundation, Seattle, Washington

Clinical Infectious Diseases® 2015;61(S5):S387-8

© 2015 World Health Organization; licensee Oxford Journals. This is an open access article distributed under the terms of the Creative Commons Attribution IGO

The vaccine was introduced in Burkina Faso, Mali, and Niger in December 2010 and was enthusiastically accepted. By the end of that month, almost 20 million persons aged 1-29 years had been vaccinated, and the following epidemic season showed a dramatic reduction in group A meningococcal disease in all 3 countries. Vaccination campaigns have continued, and as of the end of 2014, >217 million Africans have been immunized in 15 countries. The vaccine has been shown to be safe and has generated herd protection, with control and near-elimination of group A meningococcal disease wherever it has been used [2-4].

Pathogens and Global Health

ISSN: 2047-7724 (Print) 2047-7732 (Online) Journal homepage: http://www.tandfonline.com/loi/ypgh20

Emergence and control of epidemic meningococcal meningitis in sub-Saharan Africa

Idris Mohammed, Garba Iliyasu & Abdulrazaq Garba Habib

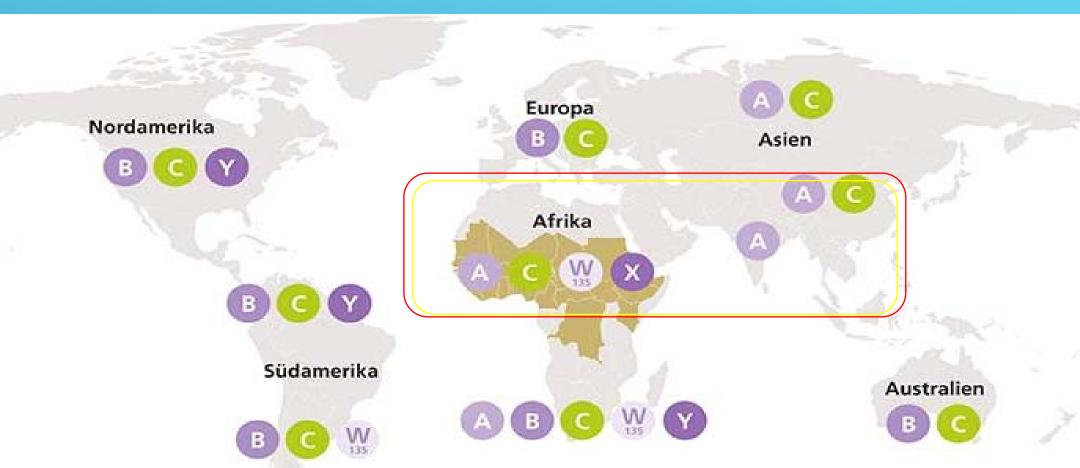
To cite this article: Idris Mohammed, Garba Iliyasu & Abdulrazaq Garba Habib (2017) Emergence and control of epidemic meningococcal meningitis in sub-Saharan Africa, Pathogens and Global Health, 111:1, 1-6, DOI: 10.1080/20477724.2016.1274068

To link to this article: http://dx.doi.org/10.1080/20477724.2016.1274068

Accepted author version posted online: 20 Dec 2016.

Published online: 12 Jan 2017.

Table 1. Major epidemics in sub-Saharan Africa over the past 40 years.


Country	Year	Number of cases	CFR	Serotype
Before MenAfriVa	c Campaign			
Nigeria ¹⁵	1977	1257	8.3	A
Rwanda ¹⁶	1978	1182	4.8	Α
Burkina Faso ¹⁷	1979	538	10.2	C
Côte d'Ivoire 18	1983	414	NA	A
	1985	251	8.5	Α
	1985	367	8.5	Α
Chad ¹⁹	1988	4542	9.5	A
Sudan ²⁰	1988	32,016	NA	Α
Ethiopia ^{21,22}	1981	50,000	2.0	Α
	1989	41,139	3.9	Α
Kenya ²³	1989	3800	9.4	Α
Burundi ^{24,25}	1992	1615	8.0	Α
Burkina Faso ²⁶	1996	42,129	10.0	Α
	1997	22,305	11.3	A
Mali ²⁵	1996	7254	11.5	Α
	1997	11,228	10.1	Α
Niger ^{27,28}	1995	41,930	8.7	Α
	1996	16,145	9.9	Α
Nigeria ²⁹	1996	109,580	11.2	Α
Burkina Faso ³⁰	2002	13,000	8.7	W
Nigeria ³¹	2009	55,626	4.1	A
Niger ³¹	2009	12,604	4.0	A
After MenAfriVac	Campaign			
Burkina Faso ³²	2012	2825	16.9	W
Chad ³²	2012	5808	4.4	Α
Nigeria ³³	2015	6394	5.0	C
Niger ³⁴	2015	8500	6.7	C

CFR: Case Fatality Rate

Conclusion

The introduction of MenAfriVac which is affordable, effective, long-lasting conjugate vaccine against Group A meningococcus offers extraordinary hope for wiping out epidemics of group A meningococcal meningitis in sub-Saharan Africa. However, the emergence of new serogroups coupled with the increasing number of population at risk as a result of lack of routine vaccination has posed a serious challenge toward achieving this goal. virtually eliminating group A meningococcal disease

and carriage in large regions of sub-Saharan Africa, has highlighted the need for a polyvalent vaccine to achieve the same for groups C, W, X, and Y. The current effort to develop an affordable, heat-stable, pentavalent conjugate meningococcal vaccine targeting all meningitis strains in Africa is hope to eventually put meningitis-free Africa within reach.

"MENINGITIS BELT"

Epidemiologische News 28.4.2022

Art der Meldung	Neue Richtlinien/Empfehlungen	Epidemiologische Aktualitäten	Autor: Olivia Veit					
Titel	Afrika: Meningitis, Kalenderwoche 12-15							

1 month: 461 proven cases of ABM:

Nm C: 50% Nm X: 3% Nm W:1,7% HiB: 4,8% Pneumococci

: 35%

Folgen für den Reisenden In der Kalenderwoche 12 bis 15 des Jahres 2022 (21.3.-17.4.2022) teilten 16 Länder ihre epidemiologischen Daten. In folgenden Ländern wurden Warn (Alert)- bzw. Epidemiemeldungen registriert (frühere Meldungen siehe EpiNews 25.3.2022 und Meningitis Daeshboard WHO Africa):

- **Benin:** Alert in der Region Alibori (Distrikt Gogounou) und Alert in der Region Borgou (Distrikt Sinende)
- Kamerun: Alert in der Region Littoral (Distrikt Njombe Penja)
- Niger: Epidemie in der Region Tahoua, Alert in der Region Zinder (Distrikt Magaria und Dungass)
- Senegal: Epidemie in der Region Nothern Bahr El Ghazal, Alert in der Region Dakar (Distrikt Diamniadio)

Angaben zu den Erregertypen sind beschränkt. Seit Jahresbeginn 2022 wurden von 6'185 Verdachtsfällen in 2'569 Fällen Liquor-Proben untersucht, von denen 2'071 Proben ein negatives Resultat aufwiesen. In den positiv getesteten Proben (n=461): Nachweis von *N. meningitidis* C (231, 50% der Fälle) *S. pneumoniae* (163 Fälle, 35%) *N. m.* X (14 Fälle, 3%), *N. m.* W (8 Fälle, 1.7%), Hib (22 Fälle, 4.8%), andere (21 Fälle); noch in Untersuchung (35 Fälle).

Die Impfung mit einem quadrivalenten Meningokokken-Konjugatimpfstoff (Menveo® oder Nimenrix®) wird empfohlen:

- Bei Aufenthalten > 30 Tagen bzw.
- Bei kürzerer Aufenthaltsdauer je nach individuellem Risiko (z. B. enge Personenkontakte, Arbeit in Gesundheitseinrichtungen, stark belegte Unterkünfte, Epidemiegefahr).
- Bei Alert und/ oder Epidemien wird eine Impfung bei Aufenthalt > 7 Tage oder engem Kontakt zur Bevölkerung empfohlen.

EPIDEMIOLOGY

Resurgence of pneumococcal meningitis in Europe and Northern America

Diederik L.H. Koelman, Matthijs C. Brouwer, Diederik van de Beek Clinical Microbiology and Infection, 05/2019

... the **promising decline** in the incidence of **pneumococcal** meningitis following the introduction of vaccination seems to have been **temporary**.

... replacement by non-vaccine serotypes illustrates pneumococcal meningitis continues to pose a major challenge.

We need new approaches to prevention, new vaccines and continued effort to improve treatment for patients with pneumococcal meningitis.

RESEARCH ARTICLE

Childhood meningitis in rural Gambia: 10 years of population-based surveillance

Usman N. Ikumapayi 1*, Philip C. Hill², Ilias Hossain¹, Yekini Olatunji¹, Malick Ndiaye¹, Henry Badji¹, Ahmed Manjang¹, Rasheed Salaudeen¹, Lamin Ceesay³, Richard A. Adegbola⁴, Brian M. Greenwood⁶, Grant A. Mackenzie¹,6,7,8

1 Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia, 2 Centre for International Health, University of Otago, Dunedin, New Zealand, 3 Ministry of Health, Gambia Government, Banjul, The Gambia, 4 Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria, 5 RAMBICON, Immunisation & Global Health Consulting, Lekki, Lagos, Nigeria, 6 London School of Hygiene & Tropical Medicine, London, United Kingdom, 7 Murdoch Children's Research Institute, Parkville, Melbourne, Australia, 8 Department of Paediatrics, University of Melbourne, Melbourne, Australia

Conclusions

Gambian children continue to experience substantial morbidity and mortality associated with suspected meningitis, especially acute bacterial meningitis. Such severely ill children in sub-Saharan Africa require improved diagnostics and clinical care.

^{*} Usman-Nurudeen.lkumapayi@lshtm.ac.uk

Table 2. a: Incidence per 100,000 population of clinically suspected meningitis, suspected non-bacterial meningitis and acute bacterial meningitis among children \leq 14 years of age (2008–2017), by year (n = 1427). b: Incidence per 100,000 population of clinically suspected meningitis, suspected non-bacterial meningitis and acute bacterial meningitis among children \leq 14 years of age (2008–2017), by age (n = 1427).

Year	Clinically Suspected Meningitis (n = 1,049)			Suspected	Suspected Non-Bacterial Meningitis (n = 209)			Acute Bacterial Meningitis (n = 169)		
	Cases	Incidence	95% CI	Cases	Incidence	95% CI	Cases	Incidence	95% C	
2008	97	279.5	227-341	12	34.6	18-60	8	23.1	10-45	
2009	126	167.0	139-199	1	1.3	03-07	12	15.9	8-28	
2010	122	154.7	128-185	13	16.5	09-28	16	20.3	12-33	
2011	155	189.6	161-222	29	35.5	24-51	18	22.0	13-35	
2012	101	118.4	96-143	35	41.0	29-57	54	63.3*	48-83	
2013	89	102.4	82-126	30	34.5	23-49	13	15.0	8-26	
2014	112	127.1	105-153	22	24.9	16-38	23	26.1	17-39	
2015	103	117.5	96-143	39	44.5	32-61	17	19.4	11-31	
2016	77	87.4	69-109	17	19.3	11-31	4	4.5	1.2-12	
2017	67	75.5	58-96	11	12.4	06-22	4	4.5	1.2-12	
Total	1049	125.9	118-134	209	25.1	22-29	169	20.3	17-24	
Age in Month	Clinically S	suspected Mening	itis (n = 1,049)	Suspect	Suspected Non-Bacterial Meningitis (n = 209)			Acute Bacterial Meningitis (n = 169)		
	Cases	Incidence	95% CI	Cases	Incidence	95% CI	Cases	Incidence	95% C	
<2	115	616.6	509-740	29	155.5	104-223	27	144.8	95-210	
2-23	405	345.7	313-381	83	70.8	56-87	65	55.5	43-71	
24-59	439	227.5	207-249	70	36.3	28-46	50	25.9	19-34	
60-168	90	17.8	14-22	27	5.4	04-08	27	5.4	4-8	
Total age	1049	125.9	118-134	209	25.1	22-29	169	20.3	17-24	

Note: Only 234 days of surveillance in 2008, from 12 May- 31 Dec.

^{*}Higher incidence due to the epidemic of Neisseria meningitidis W135.

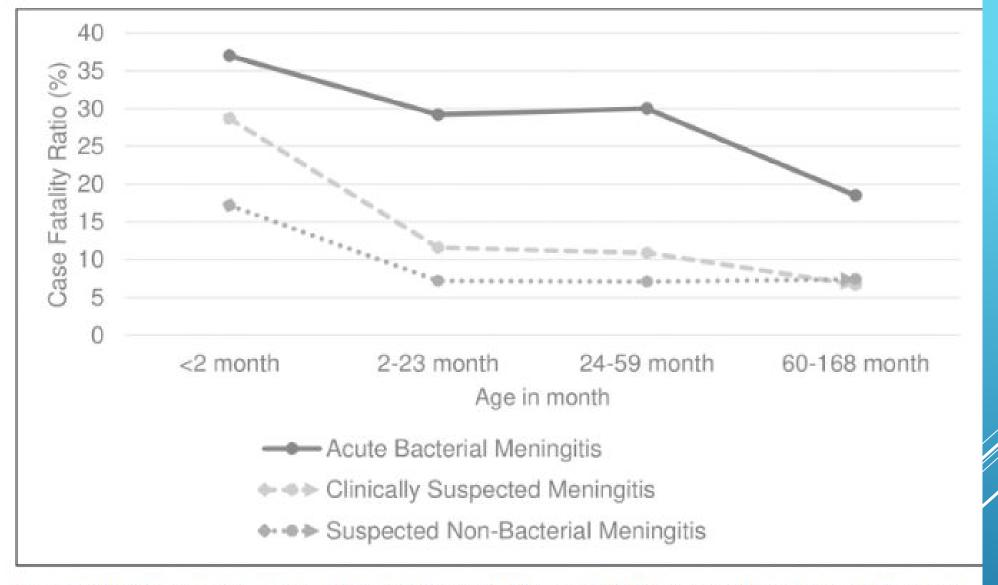


Fig 3. Age Strata Case Fatality Ratio of Clinically Suspected Meningitis (CSM), Suspected Non-Bacterial Meningitis (SNBM) and Acute Bacterial Meningitis (ABM) among children aged 1 day -14 years in Upper River Region Gambia, 2008–2017.

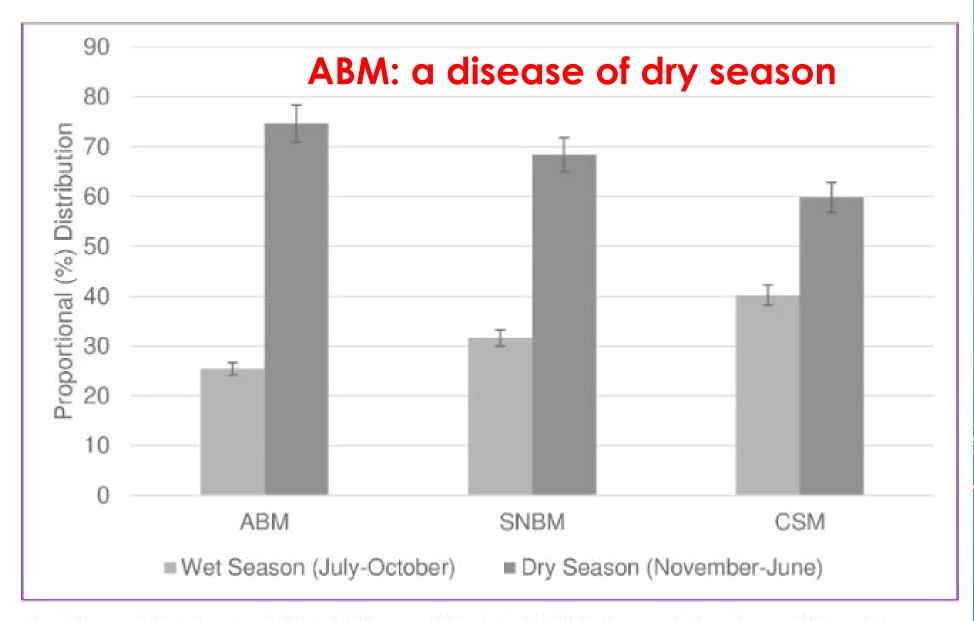


Fig 4. Seasonal Distribution of Clinically Suspected Meningitis (CSM), Suspected Non-Bacterial Meningitis (SNBM) and Acute Bacterial Meningitis (ABM) Over 10 Years in Upper River Region Gambia, 2008–2017.

Table 4. Frequency of bacteria isolated from blood and CSF cultured and corresponding case fatality ratio (CFR) caused among children in Upper River Region Gambia, 2008–2017 (n = 169).

Bacteria	Total N	Blood N	CSF N	No. of Death	CFR %	95% CI
All Bacteria	169	77	92	49	29	21.4% - 38.3%
Streptococcus pneumoniae	44	16	28	15	34.1	19.1% - 56.2%
Neisseria meningitidis W	42	10	32	9	21.4	9.8% - 40.7%
Other GNR*	26	20	6	5	19.2	6.2% - 44.9%
Staphylococcus aureus	16	13	3	6	37.5	13.8% - 81.6%
H. influenzae type b	12	1	11	3	25	5.2% - 73.1%
Non-Typhoidal Salmonella	12	8	4	4	33.3	9.1% - 85.3%
non-type b H. influenzae	6	1	5	1	16.7	0.4% - 92.9%
Klebsiella pneumoniae	6	6	0	4	66.7	18.2% -170.7%
Escherichia coli	5	2	3	2	40	4.8% - 144.5%

^{*}GNR-Gram Negative Rods that include Pseudomas luteola, Pseudomanas stuteria, Pseudomonas floreense, Serratia marcenscens, Chromosoma violacum, Enterococcus faecalis, Stentrophomonas maltophilia

https://doi.org/10.1371/journal.pone.0265299.t004

Table 5. Distribution of twenty-one pneumococcal serotypes causing pneumococcal meningitis (n = 44).

Vaccine Serotype (n = 22)							
Serotype (n = 6)	Pre-PCV13 N (%) [No. Dead]	Post-PCV13 N (%) [No. Dead]	Total N (%) [No. Dead]				
1	4 (18.2) [1]	2 (9.0) [0]	6 (27.3) [1]				
5	4 (18.2) [1]	0 (0)	4 (18.2) [1]				
14	4 (18.2) [1]	0 (0)	4 (18.2) [1]				
6A	2 (9.0) [1]	0 (0)	2 (9.0) [1]				
19F	2 (9.0) [1]	0 (0)	2 (9.0) [1]				
23F	2 (9.0) [1]	2 (9.0) [1]	4 (18.2) [2]				
Total	18 (82) [6]	4 (18) [1]	22 (100) [7]				

Non-Vaccine Serotype (n = 22)

	Tion vaccine of	crotype (n - 22)		
Serotype (n = 15)	Pre-PCV13 N (%) [No. Dead]	Post-PCV13 N (%) [No. Dead]	Total N (%) [No. Dead	
2	0 (0)	2 (9.0) [1]	2 (9.0) [1]	
21	0 (0)	1 (4.5)	1 (4.5)	
46	1 (4.5)	0 (0)	1 (4.5)	
9A	1 (4.5) [1]	0 (0)	1 (4.5) [1]	
10F	0 (0)	1 (4.5)	1 (4.5)	
12B	2 (9.0) [1]	0 (0)	2 (9.0) [1]	
12F	2 (9.0) [2]	1 (4.5)	3 (13.6) [2]	
15A	1 (4.5)	0 (0)	1 (4.5)	
15B	1 (4.5)	0 (0)	1 (4.5)	
16F	1 (4.5)	0 (0)	1 (4.5)	
17F	1 (4.5) [1]	1 (4.5)	2 (9.0) [1]	
18A	0 (0)	1 (4.5) [1]	1 (4.5) [1]	
23B	0 (0)	1 (4.5)	1 (4.5)	
25F	0 (0)	2 (9.0) [1]	2 (9.0) [1]	
35B	1 (4.5)	1 (4.5)	2 (9.0)	
Total	11 (50) [5]	11 (50) [3]	22 (100) [8]	

NB: Pre-PCV13 vaccine is defined as occurrence of cultured confirmed pneumococcal meningitis from May 12, 2008, to December 31, 2012. Whilst post-PCV13 is defined as occurrence of cultured confirmed pneumococcal meningitis from January 1, 2013, until December 31, 2017.

Table 6. Bacterial antimicrobial resistance patterns against nine antibiotics.

	Number of Isolates	Antimicrobial Resistance, n (%)								
Bacteria		AMP N (%)	CTX N (%)	CHL N (%)	CIP N (%)	SXT N (%)	ERY N (%)	PEN N (%)	TET N (%)	CN N (%)
S. pneumoniae	44	0 (0)	0 (0)	6 (14)	12 (27)	28 (64)	4 (9)	0 (0)	18 (41)	N/A
N. meningitidis	42	5 (12)	0 (0)	3 (7)	0 (0)	27 (64)	2 (5)	2 (5)	4 (10)	N/A
Other GNR	26	7 (27)	4 (15)	5 (19)	3 (12)	9 (35)	N/A	N/A	6 (23)	8 (31)
Staphylococcus aureus	16	*OX 5 (31)	N/A	0 (0)	N/A	6 (38)	2 (13)	12 (75)	4 (25)	3 (18)
H. influenzae type b	12	2 (17)	1 (8)	4 (33)	0 (0)	8 (67)	6 (50)	3 (25)	4 (33)	N/A
NTS	12	5 (42)	0 (0)	1 (8)	1 (8)	1 (8)	N/A	N/A	1 (8)	1 (8)
non-type b H. influenzae	6	0 (0)	0 (0)	3 (50)	0 (0)	0 (0)	1 (17)	0 (0)	3 (50)	N/A
K. pneumoniae	6	1 (17)	2 (33)	1 (17)	0 (0)	1 (17)	N/A	N/A	0 (0)	0 (0)
Escherichia coli	5	2 (40)	0 (0)	2 (40)	0 (0)	1 (20)	N/A	N/A	1 (20)	2 (40)

Key: AMP Ampicillin, CTX Cefotaxime, CHL Chloramphenicol, CIP Ciprofloxacin, SXT Cotrimoxazole, ERY Erythromycin, PEN Penicillin, TET Tetracycline, CN Gentamycin and OX Oxacillin, GNR Gram-negative rod, N/A Not Applicable and GNR-Gram Negative Rod.

Note: Disk diffusion methods were used following standard guidelines (CLSI 2012, M100-S22, Vol. 32 No.3).

www.elsevierhealth.com/journals/jinf

Antibiotic treatment delay and outcome in acute bacterial meningitis

Rasmus Køster-Rasmussen a,*, André Korshin b, Christian N. Meyer c

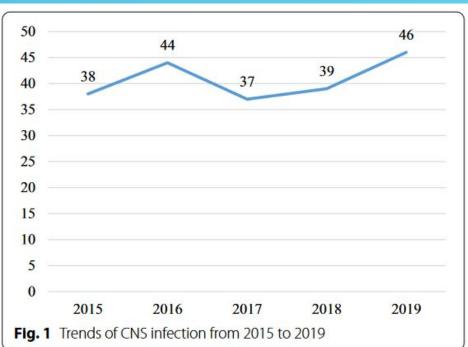
in 2022: even more important:

→ AVOID DELAY OF APPROPRIATE ANTIBIOTIC TREATMENT!!

Gams Massi et al.

Egypt J Neurol Psychiatry Neurosurg (2022) 58:18

https://doi.org/10.1186/s41983-022-00454-0


The Egyptian Journal of Neurology, Psychiatry and Neurosurgery

RESEARCH Open Access

Spectrum of central nervous system infections in a tertiary health care centre in Cameroon

Daniel Gams Massi^{1,2*}, Marcel Roger Rodrigue Mintyene Mintyene³, Annick Mélanie Magnerou^{3,4}, Seraphine Mojoko Eko¹, Caroline Kenmegne², Salomon Mbahe², Prince Eliot Sounga Bandzouzi⁵, Hugo Bertrand Mbatchou Ngahane^{2,3} and Njankouo Yacouba Mapoure^{2,3}

neurological signs and symptoms AND extra-neurological signs and symptoms

Table 2 Clinical manifestations in patients with CNS infections

Clinical signs	n	%
Neurological signs		
Headaches	140	68.6
Impaired consciousness	90	44.1
Meningeal signs	79	38.7
Seizures	74	36.3
Focal neurological deficits	59	28.9
Extra-neurological signs		
Altered general state	190	93.1
Fever	173	84.8
Vomiting	73	35.8
Respiratory distress	52	25.5
Gastro-intestinal tract signs	42	20.6
Dehydration	28	13.7
Clinical anaemia	17	8.3
Skin rash	7	3.4

www.elsevierhealth.com/journals/jinf

Antibiotic treatment delay and outcome in acute bacterial meningitis

therefore, in ABM: earliest possible diagnosis essential: History, clinical signs and symptoms, lumbar puncture Blood lab e.g. leucos, CRP, coagulation, thrombos, kidney, cultures

If lumbar puncture not possible: immediate adequate iv antibiotic tx

CSF: cells, glucose, protein, lactate, Gramstain, culture

if pretreated with antibiotics (even oral): PCR in CSF extremely helpful

Figure 2 Rate of mortality and unfavourable outcome according to the treatment delay in time interval in acute bacterial meningitis.

METAANALYSIS

M Adjunctive dexamethasone in bacterial meningitis: a meta-analysis of individual patient data

Diederik van de Beek, Jeremy J Farrar, Jan de Gans, Nguyen Thi Hoang Mai, Elizabeth M Molyneux, Heikki Peltola, Tim E Peto, Irmeli Roine, Mathew Scarborough, Constance Schultsz, Guy E Thwaites, Phung Quoc Tuan, A H Zwinderman

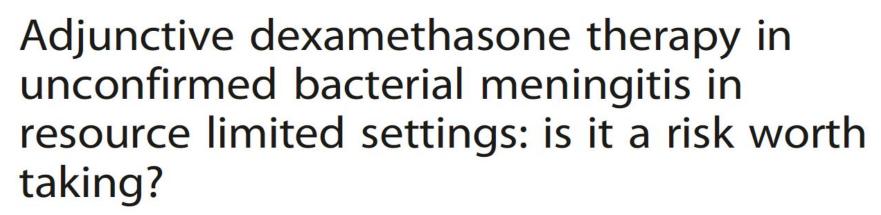
Summary

Lancet Neurol 2010; 9: 254-63

Published Online February 4, 2010

Background Dexamethasone improves outcome for some patients with bacterial meningitis, but not others. We aimed to identify which patients are most likely to benefit from dexamethasone treatment.

Europeans 55 years of age (-> pneumococci !!!)



Gudina et al. BMC Neurology (2016) 16:153 DOI 10.1186/s12883-016-0678-0

BMC Neurology

RESEARCH ARTICLE

Open Access

Esayas Kebede Gudina^{1,2*}, Markos Tesfaye^{2,3}, Aynishet Adane⁴, Kinfe Lemma⁵, Tamiru Shibiru⁶, Andreas Wieser^{7,8,9}, Hans-Walter Pfister¹⁰ and Matthias Klein¹⁰

Conclusion

Adjuvant dexamethasone use in management of suspected but unproven cases of bacterial meningitis in teaching hospitals in Ethiopia was associated with an increased mortality and poor discharge GOS. These findings reaffirm the lack of evidences for its broad use for presumed meningitis in low income countries and show that there are potential deleterious effects in unconfirmed cases. Physicians practising under such circumstances should abide with the current recommendations and defer the use of adjuvant corticosteroid in clinically suspected cases of bacterial meningitis without CSF alterations that support the diagnosis.

RESEARCH Open Access

Meningitis in adult patients with a negative direct cerebrospinal fluid examination: value of cytochemical markers for differential diagnosis

Alain Viallon^{1*}, Nicolas Desseigne¹, Olivier Marjollet¹, Albert Birynczyk¹, Mathieu Belin¹, Stephane Guyomarch¹, Jacques Borg², Bruno Pozetto³, Jean Claude Bertrand¹ and Fabrice Zeni¹

Key messages

Am. J. Trop. Med. Hyg., 88(1), 2013, pp. 127–131 doi:10.4269/ajtmh.2012.12-0447 Copyright © 2013 by The American Society of Tropical Medicine and Hygiene

Handheld Point-of-Care Cerebrospinal Fluid Lactate Testing Predicts
Bacterial Meningitis in Uganda

Albert Majwala, Rebecca Burke, William Patterson, Relana Pinkerton, Conrad Muzoora, L. Anthony Wilson, and Christopher C. Moore*

Department of Internal Medicine, Mbarara Regional Referral Hospital, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda; Department of Medicine, Duke University School of Medicine, Durham, North Carolina; Department of Laboratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia; Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia

- Cerebrospinal fluid lactate and procalcitonin are easy to determine
- Cerebrospinal fluid lactate and procalcitonin are the best markers for differentiating between bacterial and viral meningitis

Incorporation of Real-Time PCR into Routine Public Health Surveillance of Culture Negative Bacterial Meningitis in São Paulo, Brazil

Claudio T. Sacchi^{1*}, Lucila O. Fukasawa¹, Maria G. Gonçalves¹, Maristela M. Salgado¹, Kathleen A. Shutt², Telma R. Carvalhanas³, Ana F. Ribeiro³, Brigina Kemp⁴, Maria C. O. Gorla⁵, Ricardo K. Albernaz³, Eneida G. L. Marques⁶, Angela Cruciano⁷, Eliseu A. Waldman⁸, M. Cristina C Brandileone⁵, Lee H. Harrison², São Paulo RT-PCR Surveillance Project Team⁹

1 Division of Medical Biology, Department of Immunology, Instituto Adolfo Lutz, São Paulo, Brazil, 2 Infectious Diseases Epidemiology Research Unit, University of Pittsburgh Graduate School of Public Health and School of Medicine, Pittsburgh, Pennsylvania, United States of America, 3 Center for Epidemiologic Surveillance, São Paulo, Brazil, 4 Center for Epidemiologic Surveillance, Campinas, Brazil, 5 Division of Medical Biology, Department of Bacteriology, Instituto Adolfo Lutz, São Paulo, Brazil, 6 Bacteriology Area, Department of Medical Biology, Instituto Adolfo Lutz Regional Laboratory of Campinas, Campinas, Brazil, 7 Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America, 8 Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil

Table 4. Multivariable analysis of risk factors for being a RT-PCR positive, culture-negative case-patient, using culture positive patients as controls.

Risk Factor	OR	95% CI	p-value
Hospital 3, 6, or 11	4.3	2.1-8.6	< 0.0001
Antibiotic in CSF	12.2	5.9-25.0	< 0.0001
Age ≥18 years	2.8	1.3-5.8	0.006
N. meningitidis	3.3	1.5-7.7	0.005

There were a total of 103 case-patients and 142 controls. OR, odds ratio; CI, confidence interval; CSF, cerebrospinal fluid. doi:10.1371/journal.pone.0020675.t004

Glycerol adjuvant therapy in adults with bacterial meningitis in a high HIV seroprevalence setting in Malawi: a double-blind, randomised controlled trial

Katherine M B Ajdukiewicz, Katharine E Cartwright, Matthew Scarborough, James B Mwambene, Patrick Goodson, Malcolm E Molyneux,

Eduard E Zijlstra, Neil French, Christopher J M Whitty, David G Lalloo

Summary Background S infection. Mo

Department of Medicine, College of Medicine, Chichiri, Blantyre, Malawi (K M B Ajdukiewicz MRCP, K E Cartwright MRCP, M Scarborough PhD, JB Mwambene Dip Med Sci, P Goodson Dip Med Sci, M E Molyneux Dip Med Sci, E E Zijlstra PhD); Monsall Unit, **Department of Infectious** Diseases and Tropical Medicine, Medicine, Erasmus Medical North Manchester General Hospital, Delaunays Road, Manchester, UK

(K M B Ajdukiewicz);

Microbiology, Leicester Royal Infirmary, Infirmary Square, Leicester, UK (K E Cartwright); Microbiology, John Radcliffe School of Tropical Medicine, (M E Molyneux, D G Lalloo FRCP Department of Internal Centre, Rotterdam, The **Netherlands** (E E Zijlstra);

(N French FRCP); Department of Clinical Research, London School of Tropical Medicine and Hospital, Headington, Oxford, Hygiene, Keppel St, London, **UK** (M Scarborough); **Liverpool UK** (N French, C J M Whitty FRCP) Correspondence to: Pembroke Place, Liverpool, UK Katherine Ajdukiewicz, Monsall Unit, Department of Infectious Diseases and Tropical Medicine, North Manchester General Hospital, Delaunays Road, Manchester M8 5RB, UK katherineaz@doctors.org.uk

Karonga Prevention Study,

Chilumba, Malawi

Lancet Infect Dis 2011; 11: 293-300

ids.

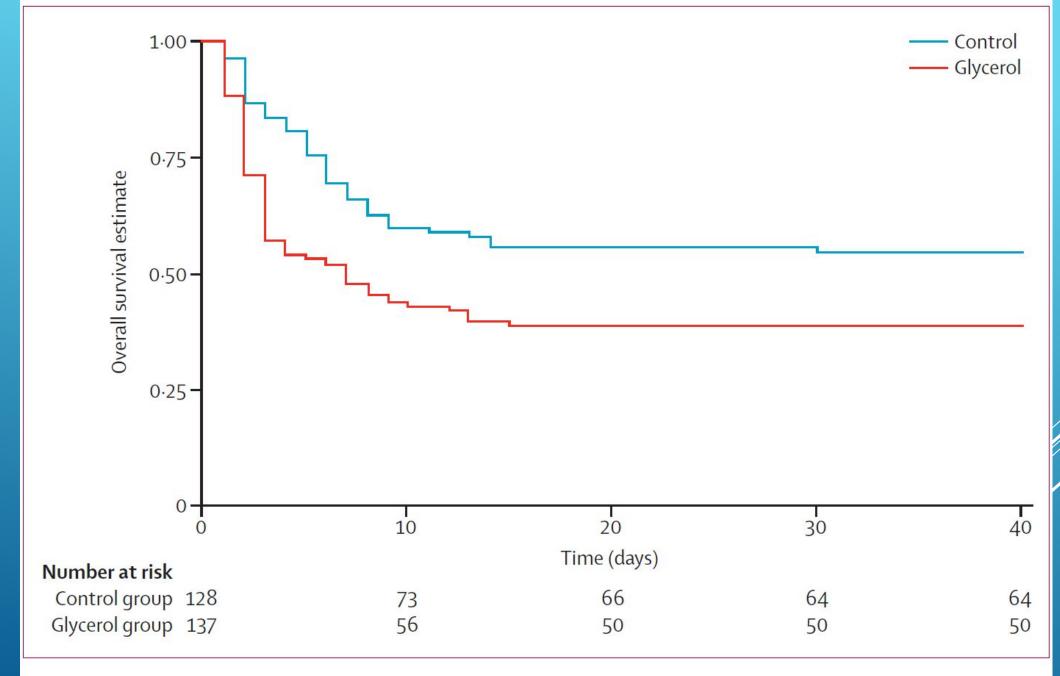
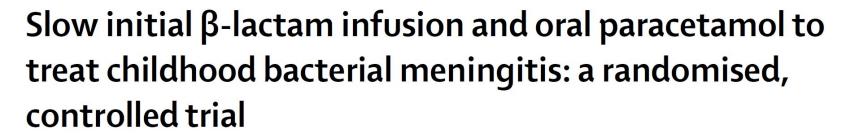



Figure 2: Kaplan-Meier survival estimates for glycerol vs control

Tuula Pelkonen, Irmeli Roine, Manuel Leite Cruzeiro, Anne Pitkäranta, Matti Kataja, Heikki Peltola

Summary

Background New antimicrobials or adjunctive treatments have not substantially reduced mortality from acute childhood bacterial meningitis. Paracetamol seems to have beneficial effects in bacteraemic adults and some experts recommend initial slow β -lactam infusion. We investigated whether these treatments had benefits in children with bacterial meningitis.

Lancet Infect Dis 2011; 11: 613–21

Published **Online**May 6, 2011
DOI:10.1016/S1473-

YES, SHOULD BE STRONGLY CONSIDERED

→ fastest possible initiation but slow infusion rate

Journal of Infection (2016) 73, 18-27

www.elsevierhealth.com/journals/jinf

Neurological sequelae of bacterial meningitis

Marjolein J. Lucas, Matthijs C. Brouwer, Diederik van de Beek*

Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, PO Box 22660, 1100DD Amsterdam, The Netherlands

Accepted 10 April 2016 Available online 19 April 2016

Table 1 Name of the high-resource	eurologic sequela e countries.	ae of ba	cterial mening	gitis in neuro				
Sequelae	Pneumococcal	Meningo	coccal Refe	rences				
	meningitis	meningi	tis					
Focal deficit	S							
Children	3-14%	3%	Table 2 N	eurologic sequel	ae of bacterial r	neningitis in		
Adults	11-36%	2-9%	low-resource					
Hearing loss					Moningococcal	Deferences		
Children	14-32%	4%	Sequelae	Pneumococcàl	Meningococcal	References		
Adults	22-69%	3-40%		meningitis	meningitis			
Seizures			Focal deficit	s				
Children	15-48%	2%	Children	12%	2-4%	9,25		
Adults	31%	6%	Adults	·—	4%	28		
Hydrocepha	lus		Hearing loss					
Children	4-21%	_	Children	25%	19-23%	11,25,39		
Adults	4%	3%	Adults	40%	_	41		
Cognitive im	pairment		Seizures					
Children	_	12-19%	Children	45-63%	17-33%	39,46		
Adults	32%	32%	Adults		_	_		
Center, PO Box	k 22660, 1100DD Ams	terdam, T	Hydrocepha	lus				
			Children	0%	0%	25		
Accepted 10 A			Adults	-	_	_		
Available onlin	Available online 19 April 2016 Cognitive impairment							
	A		Children	4-41%	4%	11,25		
\$\$\Q			Adults	_	_	_		
	Neuro-ICU Innsbruck		Additio					

Transcranial Doppler Ultrasonographic Evaluation of Cerebrovascular Abnormalities in Children With Acute Bacterial Meningitis

Yudy Fonseca¹, Taty Tshimanga², Stephen Ray³, Helen Malhotra⁴, Jean Pongo⁵, Joseph Bodi Mabiala², Montfort Bernard Gushu⁶, Tusekile Phiri⁶, Bertha Mekiseni Chikaonda⁶, Davin Ambitapio Musungufu⁷, Mananu Uchama⁷ and Nicole Fortier O'Brien^{8*}

¹ Division of Critical Care Medicine, Department of Pediatrics, University of Maryland, Baltimore, MD, United States, ² Department of Pediatrics, University of Kinshasa, Kinshasa, Democratic Republic of Congo, ³ Malawi Liverpool Wellcome Trust Clinical Research Programme, Paediatric Registrar & Wellcome Trust Clinical Fellow, Blantyre, Malawi, ⁴ Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States, ⁵ Department of Medicine, Universite des Sciences et des Technologie de Lodja (USTL), Lodja, Democratic Republic of Congo, ⁶ Department of Pediatrics, Queen Elizabeth Central Hospital, Blantyre Malaria Project, Blantyre, Malawi, ⁷ L'Hopital Generale de Reference de Nyankunde, Nyankunde, Democratic Republic of Congo, ⁸ Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States

Transcranial Doppler Ultrasonographic Evaluation of Cerebrovascular Abnormalities in Children With Acute Bacterial **Meningitis** Yudy Fonseca¹, Taty Tshimanga², Stephen Ray³, Helen Malhotra⁴, Jean Pongo⁵, Joseph Bodi Mabiala², Montfort Bernard Gushu⁶, Tusekile Phiri⁶,

Bertha Mekiseni Chikaonda⁶, Davin Ambitapio Musungufu⁷, Mananu Uchama⁷ and Nicole Fortier O'Brien® Introduction: Bacterial meningitis (BM) is a global public health concern that results Division of Critical Care Medicine, Department of Pediatrics, University of Maryland, Ba

Behavioral Neuroscience, Northeastern University, Boston, MA, United States, 5 Departs Sciences et des Technologie de Lodja (USTL), Lodja, Democratic Republic of Congo, 6 Elizabeth Central Hospital, Blantyre Malaria Project, Blantyre, Malawi, 7 L'Hopital Genera Nyankunde, Democratic Republic of Congo, 8 Division of Critical Care Medicine, Depart. Children's Hospital, The Ohio State University, Columbus, OH, United States

² Department of Pediatrics, University of Kinshasa, Kinshasa, Democratic Republic of C

Admission TCD:

Normal High flow/normal Pl High flow/low Pl Low flow

PI: Pulsatility Index

Poor outcome: High flow/low Pl Low flow

in significant morbidity and mortality. Cerebral arterial narrowing contributes to stroke Trust Clinical Research Programme, Paediatric Registrar & Wellcome Trust Clinical Fello in BM and may be amenable to intervention. However, it is difficult to diagnose in resource-limited settings where the disease is common. Methods: This was a prospective observational study from September 2015 to December 2019 in sub-Saharan Africa. Children 1 month-18 years of age with neutrophilic pleocytosis or a bacterial pathogen identified in the cerebrospinal fluid

were enrolled. Transcranial Doppler ultrasound (TCD) of the middle cerebral arteries

was performed daily with the aim to identify flow abnormalities consistent with vascular narrowing. Forty-seven patients were analyzed. The majority had Streptococcus pneumoniae (36%) or Neisseria meningitides (36%) meningitis. Admission TCD was normal in 10 (21%). High flow with a normal pulsatility index (PI) was seen in 20 (43%). and high flow with a low PI was identified in 7 (15%). Ten (21%) had low flow. All children with a normal TCD had a good outcome. Patients with a high-risk TCD flow pattern (high

flow/low PI or low flow) were more likely to have a poor outcome (82 vs. 38%, p = 0.001). Conclusions: Abnormal TCD flow patterns were common in children with BM and identified those at high risk of poor neurological outcome.

Time course of cerebral blood flow velocity in central nervous system infections. A transcranial Doppler sonography study

H P Haring ¹, H K Rötzer, H Reindl, K Berek, A Kampfl, B Pfausler, E Schmutzhard

Affiliations – collapse

Affiliation

Department of Neurology, Neuro Intensive Care Unit, University Hospital, Innsbruck, Austria.

PMID: 8418808 DOI: 10.1001/archneur.1993.00540010092024

Abstract

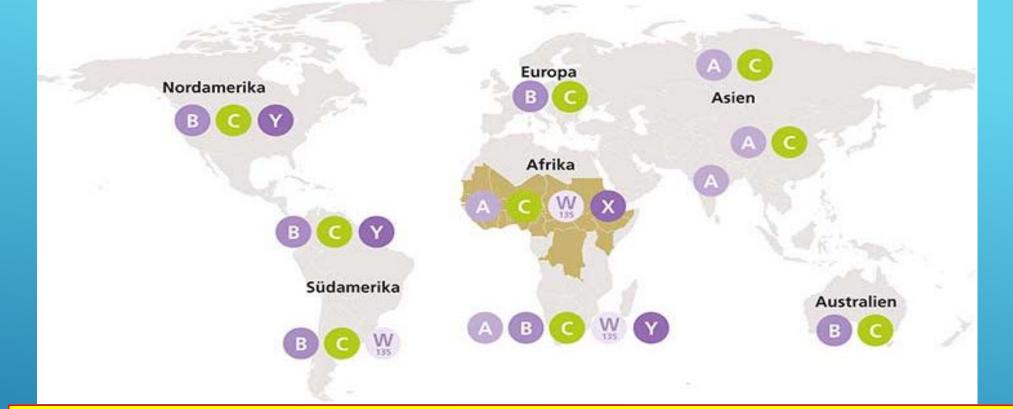
In a 3-year period, 110 patients with central nervous system infections of various causes were examined serially by means of transcranial Doppler sonography. In viral-induced infections, no changes of flow velocity in basal cerebral arteries were seen, whereas in bacterial meningitis, a significant increase of blood flow velocity in the middle cerebral artery was recorded. Its extent was mainly associated with the type of the infectious agent, most frequently observed in pneumococcal meningitis (77%). The increase was up to 100% of the baseline values and was reversible in all cases. All patients were offered full-scale neurointensive care, and all subjects with bacterial meningitis were fully heparinized.

Cerebral blood flow velocity and perfusion in purulent meningitis: a comparative TCD and 99M-TC-HMPAO-SPECT study

H Haring ¹, A Kampfl, G Grubwieser, E Donnemiller, B Pfausler, E Schmutzhard

Affiliations – collapse

Affiliation


Department of Neurology, Neuro Intensive Care Unit, University of Innsbruck, Innsbruck, Austria.

PMID: 10210815 DOI: 10.1046/j.1468-1331.1998.510075.x

... elevated cerebral bloodflowvelocity does **not** reflect cerebral hyperemia

Abstract

In 15 patients (median age 33 years; range 17-74 years) suffering from acute pneumococcal (10 cases) and meningococcal (five cases) meningitis, cerebral blood flow velocity (CBFV) was measured in the M1 - segment of the middle cerebral artery (MCA) by transcranial Doppler sonography, and cerebral perfusion changes were evaluated by 99m-Tc-hexamethylpropylene amine oxime single photon emission computed tomography (HMPAO SPECT). The objective of the study was to test whether increased CBFV during the acute phase of purulent meningitis reflects hyperemia, and to evaluate focal perfusion abnormalities and their correlation to CBFV changes. In eight patients with marked side-differences in CBFVs during the acute phase of the disease SPECT scans were normal in five. In three patients unilateral perfusion defects correlated with the side of higher CBFV. In seven patients presenting with symmetrically elevated CBFV, SPECT scans were normal in four and revealed focal abnormalities in the remaining three. Follow up SPECT scans were normal in 14/15 patients. The results of our study suggest that elevated CBFV in acute bacterial meningitis does not reflect cerebral hyperemia. Focal cerebral perfusion defects occur independently from functional alterations in the cerebral macrovasculature. A causative pathophysiologic relationship of high CBFV and focal perfusion defects cannot be drawn from these data.

Essential in all over the world, particularly in SubSaharan African countries:

- easier availabilty of
- → tetravalent meningococcal vaccines (A,C, Y, W135)
- → Haemophilus B vaccine
- → Pneumococcal vaccine(s)

Contents lists available at ScienceDirect

International Journal of Infectious Diseases

ISID INTERNATIONAL SOCIETY FOR INFECTIOUS DISEASES

long-term

Prognosis of ABM:

journal homepage: www.elsevier.com/locate/ijid

Case-fatality and sequelae following acute bacterial meningitis in South Africa, 2016 through 2020

Susan Meiring 1,2,*, Cheryl Cohen 2,3, Linda de Gouveia 3, Mignon du Plessis 3,4, Vanessa Quan 1, Jackie Kleynhans 2,3, Colin Menezes 5,6, Gary Reubenson 7, Halima Dawood 8,9, Maphoshane Nchabeleng 10,11, Mohamed Said 12,13, Nomonde Mvelase 14,15, Prasha Mahabeer 14,15, Rispah Chomba 16,17, Ruth Lekalakala 18,18, Trusha Nana 16,20, Vindana Chibabhai 16,20, Marianne Black 16,20, Anne von Gottberg 3,4,**, for GERMS-SA

¹ Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, Johannesburg, South Africa

² School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

³ Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa

⁴ School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

⁵ Division of Infectious Diseases, Department of Internal Medicine, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa

⁶ School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

⁷ Rahima Moosa Mother & Child Hospital, Department of Paediatrics & Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

⁸ Department of Medicine, Pietermaritzburg Hospital Complex, Pietermaritzburg, South Africa

⁹ Caprisa, Faculty of Health Sciences, University of KwaZulu-Natal, Durban, South Africa

¹⁰ Medical Microbiology Laboratory, National Health Laboratory Service, Dr George Mukhari Tertiary Hospital, Garankuwa, South Africa

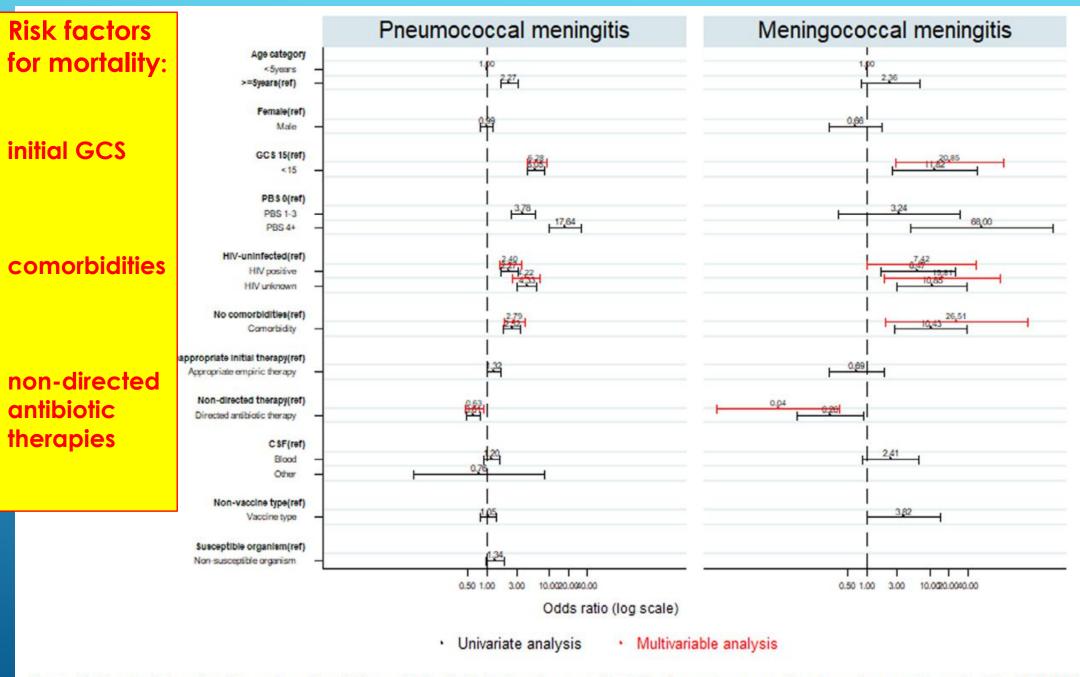
Microbiology Department, Sefako Makgatho Health Sciences University, Garankuwa, South Africa

¹² Medical Microbiology Laboratory, National Health Laboratory Service, Tswane Academic Hospital, Pretoria, South Africa

¹³ Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa

¹⁴ Medical Microbiology Laboratory, National Health Laboratory Service, KwaZulu-Natal Academic Complex, Durban, South Africa

¹⁵ School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa


¹⁶ Division of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa

¹⁷ Medical Microbiology Laboratory, National Health Laboratory Service, Helen Joseph Academic Hospital, Johannesburg, South Africa

¹⁸ Division of Medical Microbiology, Department of Pathology, University of Limpopo, Polokwane, South Africa

¹⁹ Medical Microbiology Laboratory, National Health Laboratory Service, Polokwane Academic Hospital, Polokwane, South Africa

²⁰ Medical Microbiology Laboratory, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa

Figure 3. Forest plot: univariate and multivariable analysis of risk factors for mortality following pneumococcal and meningococcal meningitis, 2016-2020 Abbreviations: GCS: Glasgow coma score; PBS: Pitt bacteremia score for severity of illness.

Thank you